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A ‘cross-sectional regression test’ (CSRT) of the CAPM is developed and its connection to the 
Hotelling T* test of multivariate statistical analysis is explored. Algebraic relations between the 
CSRT, the likelihood ratio test and the Lagrange multiplier test are derived and a useful 
small-sample bound on the distribution function of the CSRT is obtained. An application of the 
CSRT suggests that the CRSP equally-weighted index is inefficient, but that the inefficiency is not 
explained by a firm size-effect from February to December. 

1. Introduction 

The Capital Asset Pricing Model (CAPM) has been the focus of empirical 
testing for over a decade. The primary implication of the model is the 
mean-variance efficiency of the market portfolio. This is equivalent to the 
existence of a positive linear relation between an asset’s expected return and its 
covariance with the market return.’ Thus 

where 

Ei = YO + YIP, 9 i=l ,..*, N, 

expected return on asset i, 

cov(Ri, R,)/var(R,) is the beta of asset i, 
expected return on a zero-beta portfolio, 
positive market risk premium, 
number of left-hand-side assets. 

*Thanks to Nai Fu Chen, Craig Ma&inlay, Dick Roll, Steve Ross, Gonzalo Rubio, Bill 
Schwert. G. Sharathchandra, Ken Singleton, Alex Tajirian, Jerry Warner and especially Mike 
Gibbons (the referee) and Rob Stambaugh for helpful comments on earlier versions of this paper. 
Particular thanks to Rex Thompson, my thesis advisor at Carnegie Mellon University, for valuable 
feedback in the early stages of this research. Workshops at Yale University, the University of 
Southern California, the University of Rochester, Stanford University and the University of 
California, Berkeley, were of great value in formulating these ideas, 

‘See Fama (1976). Roll (1977) or Ross (1977). 
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An important test of (1) is conducted by Fama and MacBeth (1973) using an 
equally-weighted stock index as a proxy for the market portfolio. Their 
approach is to specify an alternative hypothesis of the form 

where Z, is some attribute of security i. They use residual variance and 
beta-squared. Under the null hypothesis (l), yz = 0. Fama and MacBeth test 
this restriction using, now familiar, two-pass cross-sectional-regression (CSR) 
methods. They fail to reject efficiency of the market index. Using a similar 
experimental design, several subsequent studies have investigated the cross-sec- 
tional explanatory power of dividend yield and firm size. Much of the evidence 
appears to be inconsistent with the efficiency of commonly used market 
proxies.2 

MacBeth (1975) tests (1) using a multivariate Hotelling T2 statistic. In 
contrast to the Fama-MacBeth-test, the multivariate approach does not 
require the specification of a particular alternative hypothesis. The T2 test 
directly assesses the statistical significance of deviations from (1) given ob- 
served returns on a set of assets. Inference based on MacBeth’s test is 
complicated, however (as he recognizes), by the fact that the test requires 
observability of market betas as well as a time series of returns on the 
minimum variance zero-beta portfolio. In practice, estimates of these quantities 
are substituted in the test statistic, rendering its distribution unknown, even in 
large samples. Nonetheless, MacBeth’s work constitutes an important early 
exploration of the multivariate framework. 

Gibbons (1982) employs maximum likelihood techniques in a multivariate 
test of (1). Inference is based on a standard likelihood ratio test (LRT) statistic, 
in conjunction with its limiting chi-squared distribution. Using a one-step 
Gauss-Newton computational method, a strong statistical rejection of the 
efficiency of the equally-weighted index is obtained. The LRT procedure 
incorporates (at least asymptotically) the fact that all parameters in (1) are 
unknown and estimated jointly. In this respect, it appears to dominate the 
approximate T2 procedure discussed above, which does not fully account for 
the existing parameter uncertainty. The question remains, however, whether 
asymptotic statistical analysis adequately captures the features of the distribu- 
tion of the LRT that are important to the inference process for finite sample 
sizes. 

Stambaugh (1982) reports some simulation evidence indicating that, in fact, 
the LRT does nof conform closely to its limiting distribution. The null 
hypothesis is rejected too often, the problem becoming more serious as the 

2Banz (1981) and Litzenberger and Ramaswamy (1979) are good examples. 
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number of left-hand-side assets increases.3 A related Lagrange multiplier test 
(LMT) appears to conform more closely to the &i-squared distribution. Using 
the LMT, Stambaugh fails to reject (1) at conventional significance levels with 

a variety of market proxies. 
Jobson and Korkie (1982) modify the LRT statistic using ‘Bartlett’s correc- 

tion factor’. Transformed in this manner, the statistics reported by Gibbons no 
longer reject the null hypothesis, consistent with Stambaugh’s results. Jobson 
and Korkie also report tests of the zero-beta model using statistical methodol- 
ogy developed for the Sharpe-Lintner specification, in which there is an 
observable riskless rate of return r. An estimate of y0 is substituted for r. 
Kandel (1984) shows that substitution of the MLE of y,, for I in the LRT 
statistic of the Sharpe-Lintner model produces the LRT statistic of the 
zero-beta model.4 Thus, this class of tests of the zero-beta model need not be 
considered separately.’ 

Still another multivariate test is developed by Shanken (1980). The test 
statistic is a simple quadratic form in the residuals from a generalized least 
squares (GLS) version of the traditional CSR procedure. Like the LRT and 
LMT, this ‘CSR test’ is asymptotically distributed as &i-squared. Its small- 
sample behavior is the main focus of this paper. 

The existing literature leaves several important questions unanswered. We 
know very little, from an analytic perspective, about the small-sample proper- 
ties of the tests that have been proposed or of the relations between the various 
tests. Simulation evidence favors the LMT over the LRT, but we are neces- 
sarily uncertain as to the reliability of the LMT outside the range of parameter 
values investigated thus far. Ideally, we would like to know the exact small- 
sample distribution of our test statistic. While the research presented below 
does not take us quite that far, it does provide useful insights into the nature of 
this distribution. Since many asset pricing models share essentially the same 
statistical structure as the zero-beta model, the relevance of this research 
extends beyond the CAPM context. 

Section 2 introduces the cross-sectional-regression test (CSRT) and develops 
some relations between it and other multivariate tests. The small-sample 
behavior of the CSRT is analyzed in section 3. Empirical results are reported in 
section 4, and a summary of the paper is presented in section 5. Some 

‘Gibbons also reports simulation evidence on the LRT for N = 5. Significant departure from the 
chi-squared distribution was observed only when the length of the time series was equal to 30. 
With the benefit of hindsight we know this was due to the small number of assets employed for 
computational purposes. 

4See Gibbons, Ross and Shanken (1984) for a complete analysis of the specification with a 
riskless asset. 

‘The degrees of freedom associated with Shave-Lintner tests are inappropriate for zero-beta 
tests, however, since y0 is an additional unknown parameter that must be estimated. 
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alternative specifications are considered in appendix A. Technical proofs are 
deferred to appendices B and C. 

2. A cross-sectional-regression T2 test of linearity 

2.1. Testing for equality of expected returns 

In this section, a test of the hypothesis that all securities in a given set have 
the same expected return is formulated. Let R, be an N-vector of returns at 
time t, distributed as multivariate normal with mean vector E and covariance 
matrix V. Returns are assumed to be serially independent. The null hypothesis 
is that there exists a scalar y such that E = yl,, where l,,,, is a vector of pnes. 

To simplify the problem, let R: be an N *-vector (N * = N - 1) obtained by 

subtracting R,, from R,,, . . . , RN,,. The assumptions above imply RT is 
independently and identically normally distributed over time. The null hy- 
pothesis is equivalent to the condition E( R:) = 0. The standard multivariate 
procedure for testing this condition is based on Hotelling’s T* statistic 

Tjp’s- I,* 
7 

where R* is the time series mean and S the usual unbiased sample covariance 
matrix of the Rr. T is the length of the time-series. 

Inference is facilitated by the fact that 

F= T*(m - n + l)/mn (3) 

is distributed as an F variate with degrees of freedom n and m - n + 1. The 
corresponding distributions will be denoted .F(n, m - n + 1) and T*(n, m). In 
the application above, n = N * and m=T-1. When n=l, we have the 
square of a Student t variate with m degrees of freedom, distributed as 
F(l, m). Thus, the T* test is a multivariate generalization of the standard 
two-sided t-test. 

A CSR interpretation of the T* test for equality of expected returns will 
prove useful in developing and understanding tests of the CAPM hypothesis. 
The T* test statistic above is identical to6 

Te’k’e, 

where 

‘The proofs of this and other assertions made in section 2 are similar to the proofs of results in 
section 3 and are omitted. 
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R is the time series mean of the R, and q is the MLE of y for this model. P is 
the usual unbiased sample covariance matrix of the R,. Thus, the test statistic 
is a GLS-weighted residual sum of squares from a CSR of % on l,.’ 

2.2. Testing the CAPM with beta known 

The CAPM security market relation may be expressed as 

E=XT, (4) 

where 

X= [I,: /I] and r= (Y,,Y~)‘. 

/? is an N-vector of security betas. In this section assume that beta is known. 
Analysis of this case enhances our understanding of the more realistic specifi- 
cation considered later. 

To test (4) we consider a natural generalization of the T2 statistic of section 
2.1: 

Q E Te’p-‘e, (5) 

where 

e=R-Xf and f= (X?‘X)-‘X’v’-‘3. 

f is the MLE of r for this model in which r, E and V are the unknown 
parameters.8 Q is distributed as T2( N - 2, T - 1).9 The degrees of freedom 
N - 2 reflect the fact that there are now two independent variables in the GLS 
CSR. As before, T - 1 is the divisor which makes P an unbiased estimator 
of v. 

The intuition underlying the CSRT is quite simple. Q is essentially a 
‘goodness of fit’ measure, with respect to the relation (4). When the null 
hypothesis is true, the residual vector e is randomly distributed about zero. 
The randomness arises from the fact that E and r are unknown and must be 
estimated. Since P- ’ is positive definite, the test statistic is always positive. 

‘The term GLS is used loosely throughout the paper in that we always work with an estimated 
covariance matrix, not the true parameters. 

‘This specification ignores the information which knowledge of beta provides about the 
covariance matrix of returns. While this information could certainly be incorporated, pursuit of 
this topic would be inconsistent with our pedagogical aims in this section. In section 3, the artificial 
assumptions of this section are dropped. 

‘In contrast to MacBeth (1975). we do not require that a time series of returns on a zero-beta 
portfolio be observed. 
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Table 1 

Comparison of p-values obtained under alternative distributional assumptionsa 

p-values 

Test statistic x2(38) T*(38,59) 

38.2 0.46 1.00 
49.5 0.10 0.97 
60.7 0.01 0.92 

103.2 0.00 0.50 
170.9 0.00 0.10 

‘If the test statistic is distributed as x*(38), the probability of observing a value greater than or 
equal to 49.5 is 0.10; if the distribution of the statistic is Hotelling T* with 38 and 59 degrees of 
freedom, the probability of observing a value greater than or equal to 49.5 is 0.97. 

When the null is false, however, e is distributed about some non-zero vector 
which reflects the deviation from (4). This imparts an upward bias to the test 
statistic. Unusually large values of Q, therefore, suggest rejection. The notion 
‘unusual’ is evaluated relative to the distribution of Q under the null hypothe- 
sis. 

In the current context this distribution is known, but under more realistic 
assumptions the problem of identifying the distribution of the test statistic is 

more complex. It is common, in such situations, to resort to the use of 
asymptotic statistical approximations. The adequacy of such approximations 
varies greatly from one problem to another, however. Some valuable insight 

into the present problem may be obtained by comparing asymptotic inferences 
with those based on the T2 distribution, the exact distribution of Q under our 

simplifying assumption that beta is known. 

As T -+ 00, T2(N - 2, T - 1) converges in distribution to x2( N - 2). Sup- 
pose one were to use a &i-squared table to assess the statistical significance of 
the CSRT statistic Q. How would the inferences be affected? Table 1 provides 
some comparisons for N = 40 and T = 60, which reflect the sample sizes in 
Gibbons (1982). A test statistic as large as 103 would be observed about half 
the time with Q distributed as T2(38, 59). The corresponding p-value” for a 
x2(38) variate, however, is less than 10-5. Q = 62 is sufficient to reject the null 
at the 0.01 level based on the &i-squared distribution. Yet this would occur 
more than ninety percent of the time when (4) is, in fact, true. 

To summarize, reliance on asymptotic theory would result in excessive 
rejection of the null hypothesis when it is true, i.e., a large type I error. The 
discrepancy between the small sample and asymptotic distributions can be 
attributed entirely to the stochastic behavior of p-l.l* This follows from the 

‘“The p-value is the probability of exceeding a given level of the test statistic. 

“The expected value of V ^ - ’ is [(T - l)/( T - N - 2)] V- ‘. The bias is considerable when N is 
not small compared to T. See Press (1970, pp. 107, 112). 
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observation that if P-’ is replaced by V-’ in (5) the exact distribution of Q is 
x2( N - 2), the same as the limiting distribution.‘* 

Recall that when n = 1, the T* statistic is the square of a Student t variate. 
With the variance known, the corresponding statistic is the square of a 
standard normal variate, i.e., x’(l). When m is small, the t density has much 
more mass in its tails than the normal density. There is a greater probability of 
obtaining extreme observations with the former, due to the stochastic behavior 
of the sample variance. Outliers, positive or negative, map into large positive 
values of the squared variable. This provides some intuition for the excessive 
rejection of the null when the chi-squared table is used to assess statistical 
significance. The t distribution converges rapidly to standard normal as 
m -+ co. The multivariate case is more complicated, however, as the relative 
values of m and n (equivalently T and N) become relevant. 

2.3. Alternative tests of linearity 

Except for a degrees of freedom adjustment, the CSRT of the previous 
section is a Wald test. The actual Wald statistic is Q* = [T/(T - l)]Q. Two 
other tests, the LRT and the LMT, were mentioned in the introduction, Under 
mild regularity conditions, the three test statistics have the same limiting 
&i-squared distribution. For the model considered here, the statistics are 
actually increasing transformations of each other: l3 

LRT = T In(1 + Q*/T) and LMT= TQ*/(T+ Q*). (6) 

It follows that the ordering 

LMT< LRT< Q* 

must, with probability one, hold in every sample.14 

(7) 

In our example, with N = 40 and T = 60, the median of Q is 103.2. The 
corresponding values of LRT and LMT, computed from (6) are 60.7 and 38.2, 
respectively. Each of these statistics therefore, has a true p-value of 0.5. 
Evaluated with respect to x*(38), the p-values are 0.00, 0.01, and 0.46 for Q, 
LRT and LMT, respectively. This example demonstrates that when one relies 
on asymptotic inference, the conclusions reached may depend on the particular 
test statistic adopted. l5 In particular, p-values for the CSRT and the LRT may 

‘*See Theil (1971, p. 240). 

13Evans and Savin (1982) derive the same relations in the case of linear restrictions on the 
classical linear regression model. 

14Bemdt and Savin (1977) derive these inequalities in the case of linear restrictions on a 
multivariate linear regression model. 

Is Of course if significance is assessed with respect to the true distribution of each test statistic in 
(7), then the tests must produce identical inferences. 
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seriously overstate the statistical significance of the results. These observations 
are consistent with the simulation evidence discussed in section 1. More will be 
said about these issues later. 

3. Testing linearity when beta is unknown 

3.1. An errors-in-variables adjustment 

In this section, beta is added to the space of unknown parameters and the 
more realistic model specification is analyzed. It is convenient, in this case, to 
work with the ‘market model’ parameterization of the joint distribution of 
returns: 

RI, = 0, + P,Rmt + &it, i=l,...,N. 

Let 2 be the covariance matrix of the E,,. ZI is the conditional covariance 
matrix of returns, given R,. The sample covariance matrix of the N time 
series of OLS market model residuals (with T - 2 in the denominator) is an 
unbiased estimator of JZ and is denoted 2. B is the N-vector of OLS 
estimators and 2 = [I,: la]. 

Although the CAPM constrains expected return to be linear in beta, this 
constraint is nonlinear in a statistical sense, as the unknown parameters yr and 
pi enter multiplicatively. The MLE f,,, for this model is distinct from the GLS 

CSR estimator which we define as16 

A quadratic form, similar to that of section 2, plays a central role in the 
analysis below. Use of the same symbol Q should not be a source of confusion. 
Since two estimators of r are of interest, the definition is given in terms of an 
arbitrary estimator f: 

Q = Te’e-‘e where e = R - 2?. (8) 

A subscript, M for MLE or C for CSR, indicates the particular estimator 
employed. 

The simple formulas for LRT and LMT, assuming beta known, continue to 
hold for the current specification with a few modifications. We define an 

16The GLS CSR estimator is actually identical to a one-step Gauss-Newton estimator which 
employs OLS fi as the initial consistent estimator of 8. Furthermore, the same estimator is 

obtained with 6’ in place of 2 [see Shanken (1982, ch. 2)). When beta is unknown, working with 
8 facilitates the small-sample statistical analysis. For example, assuming joint normality, ,k is 
conditionally independent of 8, given R,, while p is not. 
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adjusted version of Q as 

Q” = Q/(1 + %%i) 

where si is the MLE of var( R,), and let Q* = [T/(T- 2)]QA, reflecting the 
use of the unbiased estimator of Z in Q. LRT and LMT are now given by (6) 
with fM employed throughout. i’ The corresponding one-step test statistics are 

obtained by using fc in Q”. Qc is a natural generalization of the CSRT 
statistic of the previous section to the case where beta is unknown. It will be 
referred to as the CSRT throughout the remainder of this paper.18 

Introduction of uncertainty with respect to beta has resulted in an adjust- 
ment to the quadratic form of cross-sectional residuals. The particular form of 
the adjustment is a consequence of two facts. First, the covariance matrix of 
the beta estimation errors is proportional to the covariance matrix of the 
market model disturbances; specifically 

var[JT(B - P)] = (l/si)Z. 

Second, the impact of error in estimating beta depends on the value of yi in 
the linear expected return relation. The variance of this effect is thus propor- 
tional to yf. Additional details are contained in appendix B. 

Since the adjustment term 1 + y:/si exceeds one, QA is always less than Q. 
As T -+ 00, QA, LRT and LMT converge in distribution to x2(N - 2). Without 
the ‘errors-in-variables adjustment’, all three tests would reject the null hy- 
pothesis too often, asymptotically, even though B converges to p, as T ---) co. In 
contrast, the excessive rejection discussed in section 2, due to the stochastic 
behavior of the estimated covariance matrix, is only a problem in small 
samples. 

As earlier, the various tests may produce very different inferences in small 
samples when significance is evaluated with respect to the chi-squared distribu- 
tion. Indeed, it follows from (6) that LMT is bounded above by T. Suppose 
N = 40, T = 60. Since the 99th percentile of x2(38) is 61.2, it is impossible to 
reject the null hypothesis at this level with the LMT using its asymptotic 

“These results extend those cited in footnotes 13 and 14 since the constraints are nonlinear 
when beta is unknown. The general strategy employed in the proof is as follows. The first-order 
condition for maximization of the restricted likelihood function with respect to beta is used to 
obtain the MLE of beta as a function of p,,, and fi. Similarly, the MLE of 2 is expressed in terms 
of r,, p and Z. Recall that b and X are the unrestricted estimators based on ordinary least 
squares ‘market model’ regressions. Algebraic manipulation then leads to (6). The details are 
available on request. 

IRQ* is not a Wald statistic for the current nonlinear statistical specification. This can be 
inferred indirectly from the fact that the mean of the Wald test statistic was much lower than the 
mean of the LRT statistic in Stambaugh’s simulations, while (7) implies Q* must have a higher 
mean than LRT in every sample. 
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distribution! More generally, the inequalities (7) explain why LMT rejects less 
often than LRT when using asymptotic chi-squared tests. 

3.2. Characteristics of the small-sample distribution of the CSRT 

Introduction of uncertainty with respect to beta significantly complicates 
analysis of the exact distributions of our test statistics. We focus on the statistic 
Q,. In appendix B, the small-sample distribution of Q, is shown to be a 
mixture of non-central T2 distributions. The random non-centrality parameter 
is unobservable, as it is a function of the difference between the true betas and 
the OLS estimates. A useful implication, however, is that the exact distribution 
function of Q, is bounded above by the central 7’*( N - 2, T - 2) distribution 
function.” Equivalently, p-values computed with respect to this distribution 
understate the true p-values. Since the GLS estimator minimizes Q (viewed as 
a function of f), Q, 5 QM. Hence the distribution function of QM is also 
bounded above by the central T*( N - 2, T - 2) distribution function. 

Inverting the relation (6), Qc can be computed from the one-step LRT 
statistics and estimates reported in Gibbons (1982). Applying the results above 
to his ten subperiod statistics, an aggregate p-value of 0.75 is obtained.*’ This 
is a lower bound on the true p-value and contrasts dramatically with the 
p-value (less than 0.001) obtained from the asymptotic &i-squared distribu- 
tion. In particular, no rejection of the null hypothesis is suggested. The LMT 
statistics in Stambaugh (1982) have been transformed in a similar manner. 
Once again, no rejection is indicated, thus supporting the general empirical 
conclusions of that paper. It should be emphasized that, in these cases, our 
inferences are not dependent on asymptotic approximations. In this respect, 
they differ from all previous work on the zero-beta model. 

Suppose the p-value for Q, relative to the central T*, is smaller than the 
specified significance level. Rejection of the null hypothesis might not be 
appropriate, as we know the true p-value is larger than that computed. Thus, 
an approximation to the actual distribution function of Q is needed.21 We 
have seen that standard asymptotic results, involving the &i-squared distribu- 
tion, are not very helpful here. A somewhat unconventional asymptotic analy- 
sis, presented in appendix C, would appear to be more promising. The main 
implications of that analysis are summarized below. 

‘slhe fact that the non-central P distribution function is decreasing in the non-centrality 
parameter is used. See Johnson and Kotz (1970, p. 193). 

*OThe statistics are aggregated by a method discussed in section 4 below. For completeness, it 
should be noted that Gibbons’ one-step estimator takes the OLS CSR estimator as the initial 
consistent estimator, whereas our results assume the GLS CSR estimator is used. This simplifies 
some of the formulas. Computationally, the difference is negligible. Also note that Gibbons 
imposes the constraint y. + yt = E,,,. this is discussed in our appendix A. 

*‘A lower bound on the distribution function might also be useful and is currently under 
investigation. 
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The CAPM, together with our assumptions of temporal independence and 
joint normality, yields the following constraint on expected return, conditional 

on market return: 

where ~r=~r+(R,,,-- E,) is the ex post market price of risk. (E, is the 
expected return on the market portfolio.) The CSRT and the equivalent 
Lagrange multiplier and likelihood ratio tests essentially evaluate this condi- 
tional linearity hypothesis. An interesting implication is that such tests are 
meaningful, even if the empiricist knows ex post that realized market returns 

deviated greatly from expectations in a given subperiod. Furthermore, it is the 
(approximate) joint normality of the conditional distribution of returns, given 
R,, that is of relevance from the statistical perspective.** The ex ante distribu- 

tion of R, plays no particular role in the linearity tests, although the realized 
sample quantities R,,, and si do. 

Use of asymptotic principles to obtain an approximate distribution for the 
random non-centrality parameter, referred to at the beginning of this section, 
suggests that Q, is approximately distributed as (1 + ~:/s~)T*( N - 2, T - 2) 
given R,; i.e., as a multiple of a central T*. Note that the degrees of freedom 
T - 2 is the divisor which makes ,!? an unbiased estimator of 2. Substituting 
the estimator ylc for VI yields T*( N - 2, T - 2) as an approximate distribu- 

tion for Q,. A 23 Thus, our analysis simply boils down to replacing Q by Qs and 

modifying the degrees of freedom in the CSRT of section 2.2. 
The adequacy of our approximation depends, in part, on the accuracy of the 

estimator of yr. When the ratio yt/.si is small, precise estimation may not be 
crucial. Precision, in this context, involves the variability of the estimator 
around VI, conditional on R,. Variation in yr, due to the difference between 
realized and expected market return, is irrelevant. This potentially large source 
of variation becomes relevant, however, when testing for the existence of a 
positive ex ante risk premium. A test of this hypothesis is of interest provided 
that the linearity relation (1) is not rejected by the CSRT. 

Recent simulation evidence reported by Amsler and Schmidt (1985) reflects 
favorably on the use of the T* approximation to the CSRT statistic, in the 
usual CAPM contexts. The evidence indicates that Q$ may be satisfactorily 

22The unconditional joint distribution of returns is certainly relevant from an economic 
equilibrium perspective. 

23 The analysis in appendix C is based on the properties of Qc. It is not necessary that the CSR 
estimator be used in the denominator of the adjusted statistic Q “, however. Given the results of 
Shanken (1982, ch. 2). it might be preferable to use the MLE of y,, or a CSR estimator, modified 
for errors-in-variables induced bias, in the denominator. Such modifications had little effect on the 
results in section 4, but may be more relevant in other applications. 
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approximated by a T* distribution as well. Ma&inlay (1984) also presents 
simulation results for several multivariate tests. One must, of course, be careful 
in extrapolating from any of these results to new situations. 

In comparing the T2 CSRT to the various asymptotic &i-squared tests, it is 
important to recognize the following. All of these tests implicitly deal with the 
‘errors-in-variables problem’ in the same manner.24 Each test statistic is a 

transformation of the quadratic form Q which is adjusted downward to reflect 
the noise introduced through estimation of beta. What distinguishes the T2 
test from the other approaches is the way in which it incorporates the 

considerable (small-sample) variability in the estimator of the covariance 
matrix. As was illustrated earlier, this variability has a substantial impact on 
the properties of the resulting test statistic. 

4. Empirical applications 

Multivariate tests hold out the promise, in principle, of permitting the 
researcher to detect departures from an asset pricing relation without having to 
venture a guess as to the potential source of misspecification. In practice, 

however, there are a number of limiting factors. Since the tests involve 
inversion of an N x N covariance matrix, computational considerations neces- 
sitate some form of data reduction. Furthermore, invertibility of the covariance 
estimator requires that T be greater than N, while stationarity considerations 

dictate that T not be too large. 
One alternative is to use a subset of the available securities in the test. Given 

the considerable variability of individual security returns, however, such a test 
might not be very powerful. More commonly, securities are aggregated into 
portfolios, thereby reducing variability. There is the danger, however, as Roll 
(1979) has noted, that individual deviations from the asset pricing relation may 
cancel out in the portfolios and escape detection. Hence the importance of 
using a ‘suitable’ grouping variable.25 

If the empiricist is willing to model the nature of the deviation from a given 
expected return relation, then a traditional experimental design as in (2) might 
be preferred to the multivariate approach. For example, it might be hypothe- 
sized that the deviation is linearly related to dividend yield. In other contexts, a 

24Note that the concern here is with the influence of estimation error in /? on the properties of 
the statistic for testing the validity of the expected return relation. The expression ‘errors-in-vari- 
ables problem’ usually refers to the bias in the CSR estimator of gamma, induced by error in 
estimating beta. 

25The common procedure of grouping on the basis of estimated beta is generally motivated by a 
desire to obtain efficient estimates of the gamma parameters under the null hypothesis that the 
CAPM expected return relation is valid. Roll’s concern, on the other hand, is with the power of the 
test, i.e., the ability to reject the null hypothesis when it is, in fact, false. Grouping on beta need 
not be ‘optimal’ from this perspective. 
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grouping variable might be specified without a strong prior as to the functional 
form of its relation to expected return. In particular, monotonicity of the 
relation might be questionable. The generality of the multivariate approach can 
be valuable in such cases, as no particular model of the deviations is required. 
Even if the traditional approach is adopted and a relation between expected 

return and some variable Z is established, one may wish to further assess the 
significance of deviations from the expanded relation (2), which includes 2 as 
an independent variable. Here again, the multivariate test can be a useful tool 

of analysis. An application of this sort is presented below. 
Previous multivariate tests of the CAPM, employing beta-sorted or industry 

portfolios, all fail to reject the model when the small-sample characteristics of 
the test statistics are accounted for. Since many studies have indicated that 
deviations from the CAPM are related to firm size, it is of interest to determine 
whether the CSRT rejects the null hypothesis when size is used as the grouping 
variable. This is the starting point of our empirical analysis. 

For each of three subperiods, the following steps are taken: (i) all securities 
on the CRSP monthly return tape with complete data for the subperiod are 
ranked on the basis of total value of all shares outstanding at the end of the 
month preceding the subperiod, and (ii) the securities are grouped into twenty 
equally-weighted portfolios. Each portfolio contains approximately the same 
number of securities. The portfolios are ranked from one to twenty, portfolio 
one containing the smallest firms and portfolio twenty the largest.26 The 
portfolio rank will serve as the variable 2 in our analysis. 

The three subperiods, each of length T = 74 (months), are February 1953 to 
March 1959, April 1959 to May 1965, and June 1965 to July 1971.27 Real 

returns are computed using the consumer price index. CSR tests of the 
efficiency of the CRSP equally-weighted index are reported in table 2. The 
constraint ye + yr = E, is imposed.28 Also reported, for comparison, are tests 
of the hypothesis that the twenty portfolios have the same expected return. F 

statistics are obtained by the transformation in (3). 

In attempting to aggregate subperiod F statistics, we are confronted with the 
fact that sums of F variates do not conform to a tabulated distribution. The 
following procedure has therefore been adopted. For each subperiod statistic, 

261nitially, forty-one portfolios were formed and the twenty-first portfolio was deleted for 
reasons unrelated to the present study. Twenty portfolios were obtained from the forty by equally 
weighting the first and second, third and fourth, etc. The use of twenty portfolios is motivated by 
the desire to be comparable with some of the previous multivariate studies. Analysis. not reported 
here, employing ten portfolios fully supports the conclusions obtained with twenty portfolios. 
Similar results were also obtained with a value-weighted index. 

*‘A comprehensive revision of the CPI was completed in January 1953. Wage and price controls 
were imposed in August 1971. Note that our subperiods coincide with the first three subperiods in 
Stambaugh (1982). 

*‘See appendix A. 
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Table 2 

Cross-sectional-regression F tests for identical expected real returns (EQUAL), efficiency of the 
CRSP equally-weighted index (CAPM),= and linearity of expected return in beta and portfolio 
rank (SIZE). All tests use 20 value-sorted portfolios. The lower the rank of a portfolio the smaller 

are the firms in that portfolio. January returns have been deleted for tests in the second panel. 

Subperiod test statistics 

Distribution (p-value) 

specification 2/53-3/59 4/59-5/G 6/65-l/11 

(A) Including January returns 

F(19,55) 2.05 0.82 1.46 
EQUAL (0.02) (0.67) (0.14) 

F(19.54) 1.96 1.45 1.47 
CA PM (0.03) (0.14) (0.13) 

F(17.56) 1.57 0.88 0.92 
SIZE (0.11) (0.59) (0.56) 

(B) Excluding January returns 

F(19.49) 2.35 0.90 1.69 
EQUAL (0.01) (0.58) (0.07) 

F(19,48) 2.22 1.44 1.69 
CA PM (0.01) (0.15) (0.07) 

F(17,SO) 2.44 0.94 1.71 
SIZE (0.01) (0.54) (0.07) 

“The constraint ye + y, = E, is imposed as described in appendix A. 

(overall 
p-value) 

(0.061) 

(0.009) 

(0.308) 

(0.018) 

(0.003) 

(0.014) 

the standard normal z corresponding to the given p-value is determined. The 
subperiod z ‘s are then added and divided by ,/3, to obtain an aggregate N(0, 1) 
statistic from which an aggregate p-value may be determined. 

While equality of expected returns cannot be rejected at the 0.05 level, 
efficiency of the equally-weighted index is rejected at the 0.01 level. Note that 
rejection of the efficiency relation (1) using value-sorted portfolios does not 
necessarily imply a ‘size-effect’; i.e., the deviations from (1) need not be 
monotonically related to firm size. To determine whether the rejection is 
indeed driven by size, the mean return vector R was regressed on a constant, 
B, and a proxy for size - the portfolio rank. The results, not reported here, are 
consistent with the evidence in Banz (1981), who uses a traditional CSR 
approach to document a size effect.29 

The finding of a ‘significant’ coefficient on the size variable is sufficient to 
reject efficiency of the CRSP index. It is of further interest, however, to 
determine whether size completely ‘accounts for’ the misspecitication of (1). 
This sort of question is not typically addressed in CSR studies, but is easily 

29The results are reported in Shanken (1982, ch. 3). 
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handled within the multivariate framework. We wish to test the constraint (2) 

where Z, is our size rank variable. The CSRT statistic is similar to that in (9); e 
is now the N-vector of residuals from the GLS CSR which includes Zj as an 
additional independent variable. This Qz is approximately distributed as 

T*( N - 3, T - 2); N - 3, since there are three independent variables in the 
CSR, and T- 2 since 2-l . 1s still used in the quadratic form (8).30 Based on 
the evidence in table 2, the hypothesis that size completely accounts for the 
deviations from (1) cannot be rejected. 

Unadjusted for errors-in-variables, the statistics for testing the size specifica- 
tion are 1.57, 0.90 and 0.92. Comparing these with the adjusted statistics in 
table 1, we find very little difference. This is due to the fact that the largest 

value of y:/sz, which occurred in the second subperiod, was only 0.02. The 
overall p-value of 0.29 for the unadjusted statistics underestimates the true 
p-value. Thus, we are assured that our failure to reject the null hypothesis is 

not due to problems with asymptotic inference.31 
Keim (1983) has recently reported evidence that the size effect is more 

pronounced in January than in the other months. He attributes nearly half of 

the effect, over the period 1963-1979, to January abnormal returns, and 
suggests that two separate phenomena may be at work. To assess the extent to 
which the rejection of efficiency observed here is due to a ‘January effect’, the 
tests described above were rerun with January returns deleted. Consistent with 
Keim’s observations, both the magnitude and significance of the size effect (not 
reported here) were substantially reduced. In light of this, one might expect a 
weaker rejection of (1) by the CSRT with the January returns deleted. This 
need not be the case, however. 

Suppose the market model is reasonably well specified for February-Decem- 
ber, but the return process is fundamentally different in January. If the CRSP 
index is inefficient with respect to the February-December joint distribution 
then the probability of detecting this departure from the null hypothesis could 
increase with the January source of variation removed. In other words, 
elimination of data might actually increase the power of the test. The results 
reported in the second panel of table 2 are consistent with this scenario. 

Equality of expected returns and efficiency of the equally-weighted index are 
strongly rejected by the data. In each case, the p-values are lower than the 
corresponding entries in the first panel. In striking contrast to the earlier 
results, inclusion of the size rank variable does not greatly improve the fit of 
the expected return relation with the January returns deleted. Thus, the CRSP 
index appears to be inefficient even apart from the size and January effects 

“The proof is similar to that in appendix C and is omitted. Note that Z, is a known variable. 
Estimation error in the additional independent variable would further complicate the statistical 
analysis. 

“The small-sample bound on the distribution function does rely on the assumption of 
normality. however. The proof is similar to that in appendix B and is omitted. 
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found in historical returns. Further exploration of this phenomenon is left to 
future research.32 

5. Summary and ctmclusions 

Several multivariate tests of the zero-beta CAPM have been proposed in the 
literature. Since the three basic test statistics are exact transformations of one 
another, there is really just one test. The three alternative test statistics 
conform to a given ordering in every sample, yet all three have the same 
asymptotic chi-squared distribution. If this distribution is taken as the refer- 
ence point for drawing inferences, different conclusions may be reached, 
depending on which test statistic is employed - a problem previously encoun- 
tered elsewhere in the econometrics literature. 

Simulation evidence reported by Stambaugh (1982) indicates that the likeli- 
hood ratio test does not conform well to the chi-squared distribution. The null 
hypothesis is rejected too often when the number of market model equations N 
is even moderately large in relation to the time series length T. While the 
Lagrange multiplier test performs better in simulations, we have observed 
analytically that it suffers from the reverse problem - it accepts the null 
hypothesis too often when N is large in relation to T. 

An analysis of the cross-sectional regression test (CRST) has revealed its 
close relation to the Hotelling T2 test and highlighted the central statistical 
role played by the estimator of the covariance matrix. The T2 distribution has 
been proposed as a useful approximation to the exact distribution of the 
CSRT, after a simple adjustment for error in the estimation of beta. It was 
noted that this proposal appears to be consistent with the existing simulation 
evidence. 

It has been proven that under certain circumstances, frequently encountered 
in practice, inferences may be made without appeal to asymptotic approxima- 
tions. This occurs when the value of the CSRT statistic, unadjusted for 
‘errors-in-variables’, is sufficiently small, indicating that the null hypothesis 
cannot be rejected. This was observed to be the case for the data in Gibbons 
(1982) and Stambaugh (1982) and constitutes the only small-sample result 
obtained thus far, in the zero-beta literature. 

An empirical application of the CSRT suggests that the CRSP equally- 
weighted index is inefficient, but that the inefficiency is not explained by a firm 
size-effect from February to December. This application illustrates the value of 

“As do several previous studies, we require that firms have complete data for a given subperiod. 
A ‘survivorship bias’ related to firm size would not appear to explain the differences between the 
two panels of table 1, however. Of course, when viewed as tests of the CAPM, our results are 
subject to the usual ambiguities associated with the use of market proxies. See Roll (1977) for a 
discussion of these issues. 
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the multivariate test as a tool to be used in conjunction with more traditional 

methods and not necessarily as an alternative to those methods. 

Appendix A: Alternative specifications 

In this appendix, extensions to a multi-factor asset pricing specification are 
stated. The proofs involve minor modifications of the one-factor case and are 
omitted. Let S be a K X 1 random vector and consider the following generali- 

zation of the usual market model regressions: 

R,, = ai + /3,8, + Ed,, i=l ,..., N, (A.11 

where the E;, are assumed to be independent and identically distributed over 
time, independent of 6, with mean zero and covariance matrix 2. Furthermore, 
the joint distribution of the E,, is assumed to be multivariate normal. pi is a 
row vector of regression coeffcieints. (Y and B are the corresponding N X 1 and 
N x K matrices of parameters, assumed to be constant over time. 

The relation to be tested is E = Xr, where X is now N X (K + 1) and r is 
(K + 1) x 1 with y1 K X 1. Sufficient conditions for this asset pricing relation to 
hold are given in the Connor (1983) equilibrium extension of Ross’s Arbitrage 
Pricing Theory. f, 2, 2, e and Q are defined as in section 3, with the obvious 

modifications. In addition, 

Q” 3 Q/(1 + ?;A-‘?I), 

where A is the sample covariance matrix of the S,, with T in the denominator. 
The conditional distribution of Q,, given S and B, is T*(N - K - l,T - K 

- 1; h) with X random. Q$ is approximately distributed as T*( N - K - 1, 
T-K- l), which converges to x*(N- K- l), as T+ co. N-K- 1 reflects 
the fact that there are K + 1 columns in X, while T - K - 1 is the divisor 
which makes ,% an unbiased estimator of 2. 

If the components of 6 are portfolio returns, for which the multi-factor asset 
pricing relation is assumed to hold, then 

YJ, + pi= E(a). (A-2) 

,Combining (A.2) with E = XT and noting from (A.l) that OL = E - &F(S) 
yields 

a=y& where Z=l,-/31,. (A.31 

The economic specification based on the constraint (A.3) no longer includes yr 
as a separate vector of parameters. This entails a few simple changes in the test 
procedure. 
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The cross-sectional residual vector e is now defined as & - Z+,, where & is 
the vector of OLS time series estimates of the ai. 2 is obtained by substituting 
fi for /3 in Z. v0 is a given estimator of yo. In particular, the estimator pot is 
now obtained from the GLS CSR of & on Z with covariance matrix 2. Q and 
Q” are defined as before, with +i equal to 8 - +aZ,. 

The conditional distribution of Q c, given 6 and 8, is now T’(N- 1, 
T-K-1;h) and Q{ is approximately distributed as T2(N-l,T-K-1) 
which converges to x2(N - l), as T + co. N - 1 reflects the fact that Z is the 
sole independent variable in the CSR. The same covariance estimator 3 is 
employed whether (A.2) is incorporated or not. Hence the same degrees of 
freedom T - K - 1 in each case. We assume that the components of 6 and the 
N left-hand-side assets constitute a set of N + K linearly independent assets. 
This ensures that 2 and A are invertible. 

Eqs. (6) and (7), which relate LMT and LRT to Q*, continue to hold 
for the specifications considered in this appendix. Q* is now defined as 
[T/(T - K - l)]Q, since the estimator $! in Q is the unbiased estimator of 2. 
In all cases, the indicated central T2 approximation for Q$ provides an upper 
bound on the distribution function of the unadjusted statistic Qc. 

Appendix B: Conditional distribution of Qc given R, and ) 

In this appendix, the distribution of Q, is shown to be a mixture of 
non-central T2 ‘s, under the null hypothesis that E = Xr for some r. Recall 
that 

Q, = Te’e-‘e, 

where 

and 

Averaging the market model regression equations over time, we have 

where a is the N-vector of intercepts. Noting that a = E - BE,,,, 

(B-1) 

bE+/@i,,,-E,)+Z. 
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Imposing the null hypothesis E = XT, 

where 

r= (yo,yl) and yi =yi +R,-- E,,,. 

It follows that 

R=~T+[E-_JJ] where U=j-p. 

Let h 3 I, - M. As ai = I,, P2 = 0, hence 

e=i)R=hY where Y= [z-Y,u]. 

Since 8 has rank 2, there exists an invertible N x N matrix C, which depends 
on j, such that 

c2= [O: I,]‘, 

where 0 is a 2 x (N - 2) matrix of zeroes. It is straightforward to verify that (i) 
f in (B.l) equals the estimator obtained from the GLS regression of CR on CT 
with covariance matrix C&Z’, and (ii) Q, in (B.l) is unaltered when e is 
replaced by Ce and 2 by CAC’. We may, therefore, assume without loss of 
generality that 

2= [o: ZJ. (B.4) 

Let 2 and 2-l be partitioned as follows: 

and e-l= H F 
[ 1 F' G' 

(B-5) 

wherePand Hare(N-2)x(N-2), KandGare2X2,and Land Fare 
(N - 2) X 2. Let Y, consist of the first N - 2 components of Y. Using (B.l) 
and (B.3)-(B.5), 

,i=G-‘[F’:G]= [G-‘FV,], 

e’= Y’b’= Y[[I,_,: -FG-‘1. (B-6) 
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By the formula for a partitioned inverse, 

P-'+P-'LGL'P-' -P-'LG 

-GL'P-' I G ' 

Using this, it is straightforward (although tedious) to verify that 

[‘I,_,: -FG-‘]~-‘[I,_,: -FG-‘]‘=P-’ (B.7) 

It follows from (B.6) and (B.7) that 

&2-‘e = ytj$/e-qjy= yip-‘y,. c3.8) 

All probabilistic statements below are conditional on R,. JTC is distributed 

as N(0, 2) and (T - 2)e has a Wishart distribution with parameters T - 2 and 
Z [see Anderson (1958, p. 183)]. Furthermore, E, fi and 2 are mutually 

independent [see Shanken (1982, ch. 2, app. B)]. The remaining statements are 
conditional on B as well as R,. JTY is distributed as N( - ,/TY,U, 2). The 
subvector JTY, is distributed as N( E,, z’,,), where E, consists of the first 
N - 2 components of --JT~,U and Zii is the principal submatrix of Z of 
order N - 2. The random submatrix P in (BS), multiplied by T - 2, has a 
Wishart distribution with parameters T - 2 and z’,,, independent of Y,. 
Therefore, TY/P-'Y, has a non-central T2 distribution with non-centrality 
parameter E;Zl;‘E, and degrees of freedom N - 2 and T - 2 [see Morrison 
(1976, p. 131)]. By (B.8) this is also the distribution of Q, in (B.l). Finally, the 
algebra used to establish (B.8) implies that 

= TyfU'B'I-'BU, (B.9) 

where B is obtained by replacing 2 by ,X in h. In this context, - JT~,U plays 
the role of Y and El the role of Y, in (B.8). Note that the non-centrality 
parameter X is a function of the random variable 1, but not of 2. 

Appendix C: An approximate distribution for Qc 

In this appendix, both asymptotic and small-sample statistical principles are 
applied to obtain an approximate distribution for Qc. The analysis builds 
upon the results of appendix B. Again, all probabilistic statements are condi- 
tional on R,. Thus R,, vl and si may be viewed as constants. 

The random non-centrality parameter in (B.9) can be written as 

X = (7:/s:) Z'B'E:- 'BZ where Z = ,ITs,U. 
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Since fl is normally distributed with mean /3 and covariance matrix (Tsi)-‘Z 
[see Anderson (1958, p. 183)], 2 is distributed as N(O,Z), As T + 00, B 

converges in probability to the corresponding matrix with p replaced by p. 
Since B’X’-‘BS is idempotent of rank N - 2, it follows that Z’B’Z-‘BZ 

converges in distribution to x2(N - 2) [see Graybill (1961, p. 83)]. A proof of 
the following lemma may be obtained from the author. 

Lemma. If h is distributed as q’(n) and Q is conditionally (on A) distributed 

as non-central T 2(n, m; A) then Q is unconditionally distributed as 

(1 + c)T2(n, m); i.e., as a constant multiple of the corresponding central T2 

distribution. 

In appendix B, it was demonstrated that the conditional distribution of Qc, 
given /? and R,, is non-central T2( N - 2, T - 2; A). The analysis above 
suggests (~,z/s~)x2(N - 2) as an approximation to the distribution of X. 
Utilizing this approximation and applying the lemma above, we obtain (1 + 
~~/s~)T2(N - 2, T - 2) as an approximate distribution for Qc. It should be 
emphasized that the small-sample behavior of 2-l is fully incorporated in this 
approximation since X is not a function of 2-l and our results are exact, 
conditional on X. A more standard asymptotic analysis would derive 
(1 + y:/u~)x2(N - 2) as the limiting distribution of Qc, thereby failing to 
reflect the stochastic behavior of 2-l. Of course, the suggested approximation 
for Q, converges in distribution to (1 + yiz/ui)x2(N - 2), as T --) 00. 
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