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Abstract

If investors are more averse to the risk of losses on the downside than of gains on the upside,

investors ought to demand greater compensation for holding stocks with greater downside risk.

Downside correlations better capture the asymmetric nature of risk than downside betas, since

conditional betas exhibit little asymmetry across falling and rising markets. We find that stocks

with high downside correlations with the market, which are correlations over periods when

excess market returns are below the mean, have high expected returns. Controlling for the

market beta, the size effect, and the book-to-market effect, the expected return on a portfolio

of stocks with the greatest downside correlations exceeds the expected return on a portfolio

of stocks with the least downside correlations by 6.55% per annum. We find that part of the

profitability of investing in momentum strategies can be explained as compensation for bearing

high exposure to downside risk.



1 Introduction

According to the Capital Asset Pricing Model (CAPM), a stock’s expected excess return is

proportional to its market beta, which is constant across down-markets and up-markets. While

this model has been rejected, modern factor models, like the Fama and French (1993) three-

factor model, continue to maintain the symmetric nature of factor loadings across down-markets

and up-markets. However, as early as Markowitz (1959), economists have realized that investors

care differently about downside risk, than they care about total market risk. Markowitz advises

constructing portfolios based on semi-variances, rather than on variances, since semi-variances

weight upside risk (gains) differently from downside risk (losses). More recently, in Kahneman

and Tversky (1979)’s loss aversion utility and in Gul (1991)’s first-order risk aversion utility,

losses are weighted more heavily than gains in an investor’s utility function. If investors dislike

downside risk, they ought to demand higher compensations – in the form of higher expected

returns – for holding assets with greater downside risk.

One natural extension of the CAPM, that takes into account this asymmetric treatment of

risk, is the use of downside and upside betas (Bawa and Lindenberg, 1977). These downside

betas are the market betas computed over periods for which the market return is below its mean

(downside periods). However, downside betas produce little variations in the cross-section of

expected returns in the data, since they are affected by the changes in idiosyncratic volatility and

in market volatility across downside and upside periods. In particular, many authors, including

Campbell et al. (2001), find that market volatility increases in down-markets and recessions.

Moreover, Duffee (1995) finds that idiosyncratic volatility decreases in down-markets. Both of

these effects cause conditional beta to have little asymmetry across the downside and the upside.

In contrast, conditional correlations are immune from different volatility effects across up-

markets and down-markets, and exhibit significant asymmetries across downside versus upside

moves by the market (Ang and Chen, 2001). This suggests that conditional correlations may be

better able to capture the asymmetric nature of risk than conditional betas.

We find that stocks with high downside correlations, which we measure as highly correlated

movements with the aggregate market in periods when markets fall, provide high expected

returns. The portfolio of greatest downside correlation stocks outperforms the portfolio of

lowest downside correlation stocks by 4.91% per annum. We show that downside correlations

are not linked to low liquidity in down markets nor mechanically linked to past returns. After

controlling for the market beta, the size effect, and the book-to-market effect, the greatest

downside correlation portfolio outperforms the lowest downside correlation portfolio by 6.55%

per annum.
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Our research design follows the custom of constructing and adding factors to explain

deviations from the Capital Asset Pricing Model (CAPM).1 While this approach does not speak

to the nature of the risk premia, our goal is not to present a theoretical model that explains

how downside risk is priced in equilibrium. Our goal is to demonstrate that a part of the

factor structure in stock returns reflects variations in downside risk, measured by downside

correlations. Not surprisingly, we find that while the Fama-French (1993) three-factor model

cannot explain the variations in expected returns of stocks sorted by downside correlations,

a factor reflecting the spread in expected returns induced by downside correlations explains

these variations. We term this factor ‘CMC’, and find that it also helps to forecast economic

downturns.

As an application of the CMC factor, we link the profitability of the Jegadeesh and Titman

(1993) momentum strategies to downside risk. Existing explanations of the momentum effect

are largely behavioral in nature and use models with imperfect formation and updating of

investors’ expectations in response to new information (Barberis, Shleifer and Vishny, 1998;

Daniel, Hirshleifer and Subrahmanyam, 1998; Hong and Stein, 1999). These explanations rely

on the assumption that arbitrage is limited, so that arbitrageurs cannot eliminate the apparent

profitability of momentum strategies. Mispricing may persist because arbitrageurs need to bear

some undiversifiable risk, and risk-averse arbitrageurs demand compensation for accepting such

risk (Hirshleifer, 2001). We argue that these momentum strategies have high exposures to

a systematic downside correlation factor. The intuition behind this story is that past winner

stocks have high returns, in part, because during periods when the market experiences downside

moves, winner stocks move down more with the market than past loser stocks.

The momentum portfolios load positively and significantly on the downside correlation

factor. In particular, a linear two-factor model with the market and the CMC factor explains

some of the cross-sectional variations among momentum portfolio returns. The downside

correlation factor commands a significantly positive risk premium in cross-sectional tests, and

retains its statistical significance in the presence of the Fama-French and momentum factors.

However, the downside correlation factor only modestly reduces the Carhart (1997) WML

momentum factor premium by 2.18% per annum, and hypothesis tests reject that this factor

can fully account for the momentum effect.
1 Other authors use factors which reflect the size and the book-to-market effects (Fama and French, 1993 and

1996), macroeconomic factors (Chen, Roll and Ross, 1986), production factors (Cochrane, 1996), labor income

(Jagannathan and Wang, 1996), market microstructure factors like volume (Gervais, Kaniel and Mingelgrin, 2001)

or liquidity (Pástor and Stambaugh, 2001), and factors motivated from corporate finance theory (Lamont, Polk and

Saá-Requejo, 2001).
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Our findings are closely related to other studies which use factor models to account for

the high momentum returns. Harvey and Siddique (2000) demonstrate that skewness is

priced, and show that momentum strategies are negatively skewed. Unlike skewness or other

centered moments, our conditional correlation measure emphasizes the asymmetry of risk

across downside and upside market moves. Our findings are also related to DeBondt and Thaler

(1987) who find that past winner stocks have greater downside betas than upside betas. We find

that the spreads in expected returns from downside beta are very weak since conditional betas

are roughly constant across upside and downside periods. In contrast, downside correlation

portfolios produce large cross-sectional variations in expected returns.

The rest of this paper is organized as follows. Section 2 investigates the relation between

higher-order moments and expected returns. We show that portfolios sorted by increasing

downside correlations have increasing expected returns. On the other hand, portfolios sorted by

other higher moments do not produce any discernable pattern in their expected returns. Section

3 explores if the patterns across portfolios of downside correlations are robust after controlling

for some known effects. Section 4 details the construction of our downside correlation factor

and shows that it commands an economically significant risk premium. We apply the downside

correlation factor to price the momentum portfolios in Section 5. Section 6 concludes.

2 Higher-Order Moments and Expected Returns

We start with the relations between centered moments and expected returns in Section 2.1.

Since this framework fails to produce significant spreads in expected returns, we turn our

attention to downside and upside betas advocated by Bawa and Lindenberg (1977) in Section

2.2. High downside beta stocks have only slightly higher expected returns than low downside

beta stocks. Section 2.3 examines the cause of this failure, and shows that the effect of changing

idiosyncratic and market volatilities across downside and upside periods, masks the asymmetry

of conditional betas across the downside and the upside. On the other hand, downside

correlation is not affected by changing volatility effects, and exhibits highly asymmetric patterns

across the downside and upside periods. Portfolio sorts based on downside correlations produce

large spreads in expected returns, which we demonstrate in Section 2.4.

2.1 Centered versus Conditional Moments

Economic theory predicts that the expected return of an asset is linked to higher-order moments

of the asset’s return through the preferences of a marginal investor. The standard Euler equation
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in an arbitrage-free economy is:

Et[mt+1ri;t+1] = 0; (1)

where mt+1 is the pricing kernel or the stochastic discount factor and ri;t+1 is the excess return

on asset i. If we assume that consumption and wealth are equivalent, then the pricing kernel

is the marginal rate of substitution for the marginal investor: mt+1 = U 0(Wt+1)=U
0(Wt). By

taking a Taylor expansion of the marginal investor’s utility function, U , we can write:

mt+1 = 1 +
WtU

00

U 0
MKTt+1 +

W 2
t U

000

2U 0
MKT 2

t+1 + : : : ; (2)

where MKTt+1 is the rate of return on the market portfolio, in excess of the risk-free rate.

The coefficient on MKTt+1 in equation (2), WtU
00=U 0, corresponds to the relative risk

aversion of the marginal investor. The coefficient on MKT 2
t+1 is studied by Kraus and

Litzenberger (1976) and motivates Harvey and Siddique (2000)’s coskewness measure, where

risk-averse investors prefer positively skewed assets to negatively skewed assets. Dittmar (2001)

examines the cokurtosis coefficient on MKT 3
t+1 and argues that investors with decreasing

absolute prudence dislike cokurtosis.

If the systematic component of skewness or kurtosis are priced, then stocks sorted by

coskewness or cokurtosis should exhibit cross-sectional spreads in expected returns. When

stocks are sorted into decile portfolios by increasing past coskewness, we do find that stocks

with more negative coskewness have higher returns. However, the difference between the

portfolio of stocks with the most negative coskewness and the portfolio of stocks with the most

positive coskewness is only 1.79% per annum, which is not statistically significant at the 5%

level (t-stat = 1.17). When we sort on cokurtosis, high cokurtosis stocks have slightly lower

expected returns than low cokurtosis stocks, which is opposite of that predicted by theory.

Why might centered moments like coskewness and cokurtosis fail to pick up much pattern

in the cross-section of stock returns? If the marginal investor’s utility is kinked, skewness and

other centered moments may not effectively capture the asymmetry in aversion to risk across

upside and downside moves. Empirical tests reject standard specifications for U , such as power

utility, and leave unanswered what the most appropriate representation for U is. However,

economic theory does not restrict the utility function U to be smooth. For instance, Kahneman

and Tversky (1979)’s loss aversion utility function and Gul (1991)’s first-order risk aversion

utility function have a kink at the reference point to which an investor compares gains and

losses. These asymmetric, kinked utility functions suggest that polynomial expansions of U ,

such as the expansion used by Bansal, Hsieh and Viswanathan (1993), may not be a good

global approximations of U . In particular, standard polynomial expansions may not capture
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risk which differs across down or up markets. In an effort to capture the asymmetric nature of

risk, we turn to moments conditioned on downside and upside moves of the market.

2.2 Downside and Upside Betas

A natural starting point for examining asymmetries in risk is to consider downside and upside

betas. Following Bawa and Lindenberg (1977), we define downside beta �� and upside beta

�+ as:

��(�) =
cov(ri;t;MKTtjMKTt < �)

var(MKTtjMKTt < �)

and �+(�) =
cov(ri;t;MKTtjMKTt > �)

var(MKTtjMKTt > �)
; (3)

where ri;t is the excess stock return and MKTt is the excess market return. The parameter � is

a conditioning level. Hence, ��(�) is the beta among observations where the market return is

less than �, and �+(�) is the beta among observations where the market return is greater than

�. In the case where � = MKT , where MKT is the mean excess market return, we abbreviate

the notation to ��(� =MKT ) = �� and �+(� =MKT ) = �+.

Downside and upside betas capture the notion of asymmetric exposures to risk across

periods when the market falls and periods when the market rises. These moments are different

from centered moments because they emphasize the asymmetry across upside market moves

and downside market moves explicitly by the conditioning level �. Computing ��(�) and �+(�)

is simple: we take those observations which satisfy the conditioning requirement based on �,

and then compute the betas on this subsample of observations. If the agents in the economy are

more sensitive to losses than they are to gains, then stocks with greater downside risk should

provide greater compensation.

To examine if downside or upside betas are related to expected returns, we sort stocks based

on their downside betas and on their upside betas to form portfolios based on these sorts. Since

we have fewer observations available to us as � moves further away from the mean, we focus

on the conditioning level of � = MKT , so that roughly half of the observations are used

to compute �� and �+ for each stock. We rank stocks into deciles, and calculate the value-

weighted holding period return of the portfolio of stocks in each decile over the following

month. We rebalance these portfolios each month. Appendix A provides further detail on

portfolio construction.

Table (1) presents the characteristics of portfolios formed by the sorts of stocks on their

downside betas and on their upside betas, as well as on their unconditional betas. Panel A of
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Table (1) shows the summary statistics of stocks sorted by the unconditional betas. The column

labeled ‘�’ shows the unconditional betas of each portfolios calculated at the monthly frequency

over the whole sample. This column shows that the portfolios constructed by ranking stocks

on past unconditional betas retain their beta-rankings in the post-formation period. However,

confirming many previous studies, Panel A shows that there is no pattern in the expected returns

of the beta-sorted portfolios.

Panel B of Table (1) reports the summary statistics of stocks sorted by downside beta, ��.

The columns labeled ‘�’ and ‘��’ list the post-formation unconditional betas and downside

betas, respectively. Portfolios with higher past downside beta have higher unconditional betas.

Sorting on past �� also produces large ex-post formation spreads in downside beta, that is,

downside beta is also persistent. There is a weakly increasing, but mostly humped-shaped

pattern in the mean returns of the �� portfolios. However, the difference in the returns is not

statistically significant. In Panel C, stocks sorted on past �+ exhibit no spread in average returns.

Hence, while there appears to be a weak spread in the expected returns across downside betas,

upside beta does not seem to be priced.

2.3 The Failure of Conditional Beta Measures

In this section, we investigate why the conditional beta measures fail to produce a significant

relation between downside betas and expected returns. One reason why the effect of downside

beta is weak is that there is little difference across downside and upside betas in the data, so the

downside beta picks up very little asymmetry in risk.

Panel A of Figure (1) shows the average downside and upside beta for various conditioning

levels on the x-axis across the 48 Fama-French (1997) industry portfolios at the monthly

frequency. On the LHS of the x-axis for x � 0, the figure displays the average ��(�) across

all 48 industry portfolios, where � is x standard deviations below the unconditional mean of

the market. For example, at x = �1, the figure plots ��(� = MKT � SEMKT ), where

MKT is the unconditional mean of the excess market return and SEMKT is the unconditional

volatility of the excess market return. At x = 0, the figure plots ��(� = MKT ). Similarly,

on the RHS of the x-axis for x � 0, the figure displays �+(�), for � representing x standard

deviations above the mean of the market. There are two points plotted at x = 0 representing

��(� = MKT ) � �� and �+(� =MKT ) � �+. To construct the average industry ��(�), we

first select the sample of observations which satisfies the conditioning requirement based on �.

Then, the individual ��(�) for each industry is computed for each sample. The figure graphs

the average ��(�) across the industries for each �. The procedure is repeated for the average
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�+(�) across the 48 industries.

In Panel A of Figure (1), the average �� across the 48 industries is only slightly higher

(4.8%) than the average �+ at � = MKT (x = 0). As we condition on more extreme

market moves (as � becomes larger in absolute value), the plot shows little difference between

��(�) and �+(�). When we examine the differences between �� and �+ for the industries

individually, we see the reason why. Panel B shows the ratio of �� to �+ across each of the 48

industries at � = MKT . The downside beta is greater than the upside beta for only 25 out of

the 48 industries. In summary, there is little asymmetry in conditional betas across upside and

downside movements of the market.

To further investigate the failure of the conditional betas, we decompose the downside and

upside betas into a conditional correlation term and a ratio of conditional total volatility to

conditional market volatility:

��(�) =
cov(ri;t;MKTtjMKTt < �)

var(MKTtjMKTt < �)
= ��(�)� k�(�)

and �+(�) =
cov(ri;t;MKTtjMKTt > �)

var(MKTtjMKTt > �)
= �+(�)� k+(�); (4)

where downside and upside correlation (��(�) and �+(�), respectively) are given by:

��(�) = corr (ri;t;MKTtjMKTt < �)

and �+(�) = corr (ri;t;MKTtjMKTt > �) ; (5)

and k�(�) and k+(�) are ratios of conditional volatilities:

k�(�) =
�(ri;tjMKTt < �)

�(MKTtjMKTt < �)

and k+(�) =
�(ri;tjMKTt > �)

�(MKTtjMKTt > �)
: (6)

As with the notation for downside and upside beta, when � = MKT , we abbreviate to ��(� =

MKT ) � ��, �+(� = MKT ) � �+, k�(� = MKT ) � k�, and k+(� =MKT ) � k+.

The asymmetry in conditional correlations is much stronger than the asymmetry in betas

across market downside and upside movements. Panel C of Figure (1) looks at the effects of

downside and upside correlations across various �. There is a marked asymmetry across the

average downside and upside correlations for the 48 industry portfolios, with a sharp break at

� = MKT (x = 0). Ang and Chen (2001) show that if returns are drawn from a normal

distribution, as � becomes larger in absolute magnitude, the downside and upside correlations

must be symmetric and tend to zero. While upside conditional correlations decrease as �
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increases, downside correlations do not decrease as � decreases. Panel D of Figure (1) shows

that at � = MKT , the point estimates of the downside correlations, ��, are higher than the

upside correlations, �+, for every industry portfolio.

The second term in equation (4) is the reason why there is an asymmetry in conditional

correlations but not in conditional betas. The terms, k�(�) and k+(�), are the ratios of total

asset volatility to market volatility, conditional on downside and upside market moves. We

plot these volatility ratios in Panel E of Figure (1). Downside volatility ratios are much lower

than volatility ratios on the upside. The corresponding Panel F shows the ratio k�=k+ for each

industry. In all but one of 48 industries, the downside volatility ratio is higher than the upside

volatility ratio.

There are two effects that explain why on average k�(�) < k+(�). First, the denominator of

k�(�) and k+(�) in equation (6) is market volatility. Market volatility is asymmetric and higher

after negative shocks to expected returns. Hence, conditional on the downside, the denominator

of equation (6) is larger for k� than for k+. Second, Duffee (1995) finds that cross-sectional

dispersion is asymmetric and idiosyncratic volatility decreases when the stock market falls. This

makes the ratio of total volatility to market volatility larger for k+ than for k�. Both of these

effects contribute to downside k�(�) being lower than k+(�) on average, as Panels E and F of

Figure (1) demonstrate.

The decrease of k�(�) on the downside relative to k+(�) on the upside counter-acts the

increase of ��(�) on the downside relative to �+(�) on the upside. Multiplying the points in the

conditional correlation line in Panel C together with the corresponding point in the conditional

volatility ratio line in Panel E produces a relatively flat effect for the conditional betas in

Panel A. Hence, the conditional beta is relatively flat across downside and upside movements

because the increase in correlations on the downside is muted by the decrease in conditional

idiosyncratic volatility and by the increase in market volatility.

2.4 Downside Correlations and Expected Returns

While the cross-sectional spreads of expected returns of stocks sorted on downside and upside

betas are small, we now demonstrate that sorting on the correlation component of the beta

produces a large spread in expected returns, in particular for downside correlations. The

conditional correlations are asymmetric over downside and upside movements, as opposed to

the relatively low asymmetry in conditional betas across the downside and upside. Conditional

correlations are unaffected by different idiosyncratic and market volatility across upside and

downside moves, whereas these effects cause conditional beta to have little downside versus
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upside asymmetry. Sorting on the other component of beta, the ratio of total to market volatility,

produces no pattern in expected returns. Hence, conditional correlations may be better able to

capture asymmetries in risk than conditional betas.

Table (2) lists monthly summary statistics of the portfolios sorted by �� and �+. We choose

the same conditioning level, � =MKT , as the sorts for the conditional betas in Table (1). Panel

A of Table (2) contains the results for stocks sorted on past ��. The first column lists the mean

monthly holding period returns of each decile portfolio. Stocks with the highest past downside

correlations have the highest returns. Going from the portfolio of lowest downside correlations

(portfolio 1), to the portfolio of highest downside correlations (portfolio 10), the average return

almost monotonically increases. The return differential between the portfolios of the highest

decile �� stocks and the lowest decile �� stocks is 4.91% per annum (0.40% per month). This

difference is statistically significant at the 5% level (t-stat = 2.26), using Newey-West (1987)

standard errors with 3 lags.

The portfolio of stocks with the highest past downside correlations have the highest betas.

Since the CAPM predicts that high beta assets have high expected returns, we investigate in

Section 3 if the high returns of these portfolios are explained by the market betas. However,

the high returns on these portfolios do not appear to be attributable to the size effect or the

book-to-market effect. The columns labeled “Size” and “B/M” show that high �� stocks tend

to be large stocks and growth stocks. Size and book-to-market effects would predict high ��

stocks to have low returns rather than high returns. The �� portfolios are also flat in leverage,

so leverage also cannot be driving the pattern in expected returns.

We also control for the size and book-to-market effect using the Fama-French (1993) three-

factor model. We take the time-series alphas from a regression of a �� decile’s excess portfolio

returns onto MKT, SMB and HML factors:

rit = ai + biMKTt + siSMBt + hiHMLt + �it: (7)

These alphas are reported in the column labeled ‘FF �’ of Table (2), and they maintain their

nearly monotonic rankings. The difference in the Fama-French alphas between the decile 10

portfolio and the decile 1 portfolio is 0.53% per month, or 6.55% per annum with a p-value

0.00. Hence, the variation in downside risk in the �� portfolios is not explained by the Fama-

French model. In fact, controlling for the market, the size factor and the book-to-market factor

increases the differences in the returns from 4.91% to 6.55% per annum.

The second to the last column calculates the post-formation conditional downside correla-

tion of each decile portfolio. These post-formation period �� are monotonically increasing,

which indicates that the top decile portfolio, formed by taking stocks with the highest
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conditional downside correlation over the past year at the daily frequency, is the portfolio with

the highest downside correlation over the whole sample at the monthly frequency. This implies

that using past �� is a good predictor of future �� and that downside correlations are persistent.

The last column lists the downside betas, ��, of each decile portfolio. The �� column

shows that the �� portfolios have a fairly flat �� pattern. Hence, the spread in expected returns

of the �� portfolios is not due to ��. We contrast this with the ex-post formation �� of the

�� portfolios in Panel B of Table (1). The �� portfolios have a slightly humped shape pattern

(increasing and then decreasing) of expected returns. The �� statistics of the �� portfolios have

the same humped shape pattern.

Panel B of Table (2) shows the summary statistics of stocks sorted by �+. In contrast to

the stocks sorted by ��, there is no discernable pattern between the mean returns and upside

correlations. However, the patterns in the �’s, market capitalizations, and book-to-market ratios

of stocks sorted by �+ are similar to the patterns found in �� sorts. In particular, high �+

stocks also tend to have higher betas, tend to be large stocks, and tend to be growth stocks. The

last two columns list the post-formation �+ and �+ statistics. Here, both �+ and �+ increase

monotonically from decile 1 to 10, but portfolio sorts by �+ do not produce any pattern in their

expected returns.

In summary, Table (2) shows that assets with higher downside correlations have higher

returns. The difference between the first and tenth decile of raw returns is 4.91% per annum, but

this increases to 6.55% per annum controlling for the Fama-French (1993) factors. Downside

beta does not pick up this spread in expected returns because it exhibits little asymmetry across

downside and upside movements. In contrast to the strong relationship between expected

returns and downside moments, expected returns do not seem to be related to upside conditional

moments (�+ or �+).

3 Pricing the Downside Correlation Portfolios

In this section we conduct a battery of tests to try to price the downside correlation effect.

Section 3.1 examines if the expected returns on downside correlation portfolios can be explained

by the market beta. Section 3.2 examines if these portfolio returns can be explained by the size

effect, the book-to-market effect, or the momentum effect. Section 3.3 asks if the high downside

correlation expected returns are robust across various subsamples. We show that downside

correlation is not mechanically linked to past returns nor related to periods of low liquidity in

Sections 3.4 and 3.5, respectively. Section 3.6 interprets our findings.
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3.1 Can Market Risk Price Downside Correlation?

In Table (2), the downside correlation portfolios display increasing betas with increasing ��.

This raises the concern that the expected returns on the downside correlation portfolios can be

explained by the market beta. To allay such concerns, we work with twenty portfolios formed

in the following manner. Stocks are first sorted into two groups (high beta versus low beta)

according to their past betas over the past year at the daily frequency. Each group consists

of one half of all firms. Then, within each beta group, we rank stocks based on their ��, also

computed using daily data over the past year into decile portfolios. This gives us 2 (�)� 10 (��)

portfolios. When we average across the beta portfolios for each �� decile, we find the spread

in �� controlling for the beta effect in ten decile portfolios. These decile beta-controlled ��

portfolios have near-flat uniform ex-post formation betas, which indicates that the double-sort

is successful at controlling for beta.

The difference between the tenth and the first decile beta-controlled �� portfolios is 0.56%

per month, or 6.95% per annum, with a p-value of 0.00. A Gibbons, Ross and Shanken (1989)

(GRS) F-test to jointly test if the portfolio alphas are zero rejects with a p-value of 0.00. We

also consider Carhart (1997) four-factor model, which consists of the Fama-French factors plus

a momentum factor, WML:

rit = ai + biMKTt + siSMBt + hiHMLt + wiWMLt + �it: (8)

Similar to the Fama-French time-series regressions, the alphas are still significant, with a

difference of 0.44% per month, or 5.40% per annum, between the tenth and the first decile

portfolios. A GRS test also rejects with a p-value of 0.00. Since the effect of downside

correlation remains after controlling for the market beta, we conclude that downside correlation

cannot be explained by market risk.

3.2 Can Other Risk Factors Price Downside Correlation?

While we can control for the effect of market beta by forming additional double-sort portfolios,

this strategy quickly becomes difficult to implement if we try to control for the effects of

multiple factors. In this section, we run Fama-MacBeth (1973) cross-sectional tests (described

in the Appendix) to test if multiple risk factors can price the spread in expected returns produced

by downside correlation. In particular, we focus on the standard Fama-French (1993) model,

and augment this with the Carhart (1997) WML momentum factor.

To run these tests, we work with the 20 �� portfolios described in the previous section to

control for the beta effect. Table (3) reports the Fama-MacBeth cross-sectional estimates of the
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Fama-French (1993) factor premiums:

E(rit) = �0 + �MKT bi + �SMBsi + �HMLhi; (9)

where �j is the premium of factor j. We also report the Carhart (1997) model factor premiums:

E(rit) = �0 + �MKT bi + �SMBsi + �HMLhi + �WMLwi: (10)

In both cases, the factor premiums are all statistically insignificant and the size premium is

estimated to be negative. These results are driven by the inability of these standard factors to

price the �� portfolios. We reject that the portfolio alphas are jointly zero using a GRS test.

In Figure (2), we plot the alphas and factor loadings from the Carhart four-factor model.

Figure (2) orders the 20 portfolios so that portfolios 1-10 correspond to the low beta group, and

portfolios 11-20 correspond to the high beta group. The portfolio alphas in the top panel reflect

the spread in expected returns moving from low �� to high ��, but are much more pronounced

in the high beta group. The factor loadings for MKT in the bottom panel reflect the low-high

beta sorting, and are largely flat within each beta group. The factor loadings for SMB go the

wrong way, so that high �� firms with high returns have small SMB loadings. The HML factor

also does not account for the �� effect, since the HML factor loadings increase in the high beta

group and are flat across the low beta group. Finally, the WML factor loadings are largely flat

and very small.

3.3 Is the Downside Correlation Effect Stable Across Subsamples?

A simple robustness exercise is to check if the spread in the �� correlation portfolios remains

statistically significant in various subsamples. The top panel of Figure (2) also plots the alphas

from the four-factor model from the full sample (Jan 1964 to Dec 1999), from Jan 1964 to

Dec 1981 and from Jan 1982 to Dec 1999. The alphas have almost the same increasing pattern

in each subsample. Hence, the same qualitative relationship between �� and expected returns

holds in different subperiods.

To conduct a more formal test for stability over different subsamples, we compute the

difference between the alphas of the tenth and the first decile beta-controlled �� portfolios,

which are reported in Table (4). The difference in the alphas between portfolio 10 and 1 are

statistically significant at the 1% level for both the three-factor and the four-factor models across

the whole sample period. For the Fama-French model alphas in the first column, the alphas are

still large and statistically significant when the sample is split into two separate calendar periods,

and remain significant when the sample is split into NBER expansions and recessions.
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In the last two columns of Table (4) we report the alphas from the four-factor model. These

alphas are slightly smaller than the alphas from the Fama-French model and are also highly

significant across NBER expansions and recessions. However, when the sample is split into

two calendar periods, the difference in the alphas is near-significant (p-value = 0.06) over Jan

1964 - Dec 1981, but is highly statistically significant over the second period (Jan 1982 - Dec

1999). Nevertheless, the alphas are still of a large magnitude across various subsamples. A more

serious concern is that since the alphas including the WML factor are smaller than the alphas

from the Fama-French model, this raises the question that a large part of the high expected

returns induced by high downside correlations may be due to momentum.

3.4 Is Downside Correlation Capturing Past Returns?

There are several similiarities between the Jegadeesh-Titman (1993) momentum effect and

downside risk, which raises the concern that downside correlation is merely a noisy measure

of past returns. First, like momentum, the downside correlation alphas are exacerbated by size

and value effects (Fama and French, 1996; Grundy and Martin, 2001). Second, controlling

for momentum in the time-series regressions reduces the alphas of the downside correlation

portfolios. We show in this section that downside correlations are not mechanically linked to

past returns, hence the momentum effect.

To disentangle the effects of past returns and downside correlations, we perform a double

5� 5 sort across past 6 months returns and downside correlations. At each month, we first sort

all stocks into quintiles based on their past 6 month returns. Then to control for past returns,

we sort stocks within each past return quintiles into additional quintiles based on ��. This

procedure creates 25 portfolios, and we take the averages of the �� portfolios across past return

quintiles.

We report the alphas from the Fama-French three-factor model of these five portfolios in

Panel A of Table (5). Controlling for past returns, these averages of downside correlation

portfolios show cross-sectional dispersion in ��. Their alphas are statistically significant,

and the difference between the first and fifth portfolio alphas is 0.33% per month, which is

also significant with a p-value = 0.00. In Table (4), controlling for momentum over the first

subsample period (Jan 1964 - Dec 1981) yielded only a borderline significant result. Now, when

we control for the momentum effect by the double portfolio sort, we find that the difference in

the alphas becomes highly significant (t-stat = 2.50) over this first subsample period (Jan 1964 -

Dec 1981). Hence, after controlling for momentum, high downside correlation stocks still have

high returns.
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3.5 Is Downside Correlation Liquidity?

A number of studies find that liquidity of the market dries up during down markets. Pástor

and Stambaugh (2001) construct an aggregate liquidity measure which uses signed order flow,

and find that their liquidity measure spikes downwards during periods of extreme downward

moves, such as during the October 1987 crash, and during the OPEC oil crisis. Jones

(2001) also find that the bid-ask spreads increase with market downturns, while Chordia, Roll

and Subrahmanyam (2000) find a positive association at a daily frequency between market-

wide liquidity and market returns. These down markets, which seem to be correlated with

systematically low liquidity, are precisely the periods which downside risk-averse investors

dislike.

To study the relation between downside risk and liquidity, we follow Pástor and Stambaugh

(2001) and reconstruct their aggregate liquidity measure, L, detailed in Appendix A. After

constructing the liquidity measure, we assign a historical liquidity beta, �L, at each month, for

each stock listed on NYSE, AMEX and NASDAQ. This is done using monthly data over the

previous 5 years from the following regression:

rit = ai + �LLt + biMKTt + siSMBt + hiHMLt + �it; (11)

where Lt is the aggregate liquidity measure.

Since each stock i in our sample has a downside correlation (��i;t) and a liquidity beta (�Li;t)

for each month, we can examine the unconditional relations between the two measures. First,

we compute the cross-sectional correlation between ��i;t and �Li;t at each time t, and then average

over time to obtain the average cross-sectional correlation between downside risk and liquidity.

The average cross-sectional correlation is –0.0108, which is close to zero. We obtain the average

time-series correlation between ��i;t and �Li;t by computing the correlation between these two

variables for each firm across time, and then averaging across firms. The average time-series

correlation is -0.0029, which is also almost zero. Hence, our measure of downside risk is almost

orthogonal to Pástor and Stambaugh’s measure of aggregate liquidity risk.

To further investigate the relation between downside risk and aggregate liquidity, we

perform a 5 � 5 double sort based on liquidity and ��. At each month, we independently

sort stocks into two quintile groups based on �L and ��. The intersection of these two quintile

groups forms 25 portfolios sorted by �L and ��. We take the average of the �� portfolios across

�L quintiles, and report the intercept coefficients from a Fama-French (1993) factor time-series

regression of these average portfolios in Panel B of Table (5).

We observe a similar pattern in the average returns moving from low �� to high �� portfolios

as in Table (2). There is negative mispricing in the low �� portfolios and positive mispricing
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in the high �� portfolio. The difference between a5 and a1 is 0.26% per month, which is

statistically significant at the 1% level. Hence, even after controlling for liquidity risk using

the Pástor-Stambaugh liquidity measure, there remains significant mispricing of downside risk

relative to the Fama-French three factor model.

3.6 Is Downside Correlation Risk?

Since the mean-variance framework is rejected by various asset pricing tests, it is not surprising

that higher-order moments play a role in explaining cross-sectional variations in expected stock

returns. However, which higher-order moments are important for cross-sectional pricing is still

a subject of debate. We have shown that portfolios sorted by downside correlations produce

large spreads in expected returns which cannot be explained by the market beta, the Fama-

French (1993) SMB and HML factors, by momentum, or by liquidity. The spread in returns is

also robust across subsamples.

One puzzling result is why high downside correlation stocks exhibit significantly high

variations in expected returns, while the difference in expected returns between stocks with high

downside beta versus low downside beta is weak. Downside correlation is scaled to emphasize

comovements in only direction, while downside beta measures both magnitude and direction.

We acknowledge that it is hard to think of a model where the magnitude does not matter but only

the direction does. Even in models with one-sided constraints, for example binding short-sales

constraints (Chen, Hong and Stein, 2001) or wealth constraints (Kyle and Xiong, 2001), there

should be both direction and magnitude effects.

However, downside correlation is the component of downside beta which is unaffected

by changes in idiosyncratic and market volatilities across downside and upside movements.

Conditional correlations strongly differ across up and down markets. However, in down

markets, idiosyncratic stock volatility decreases while market volatility increases (Duffee,

1995). This means that the ratio of total volatility to market volatility decreases in down

markets, which causes the betas to have little variations across downside or upside moves

of the market. Conditional correlations are unaffected by changing idiosyncratic and market

volatilities and they are much more asymmetric across market downside and upside periods.

Hence, conditional correlations are a good statistic to measure asymmetries in risk.

Lacking an economic model, we are reluctant to say that the high expected returns

commanded by high downside correlation portfolios are due to risk. However, the standard

risk factors cannot price, or even exacerbate, the expected returns of the downside correlation

portfolios. In order to summarize this effect in a model, we capture the spread in returns
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produced by downside correlations by constructing a factor that mimicks this downside

correlation effect. This factor should be able to price the downside correlation portfolios (by

construction) and may also help explain other variations in the cross-section of expected stock

returns.

4 A Downside Correlation Factor

In this section, we build a factor that reflects the high expected returns earned by stocks with

high downside correlations. We describe the construction of this factor in Section 4.1, and show

that it prices the downside correlation portfolios in Section 4.2. Section 4.3 shows that the

downside correlation factor significantly predicts economic recessions.

4.1 Constructing the Downside Correlation Factor

We construct a downside correlation factor that captures the return premium between stocks

with high downside correlations and stocks with low downside correlations, which we call the

CMC factor for “high Correlations Minus low Correlations”. The CMC factor goes long stocks

with high downside correlations, which have high expected returns, and shorts stocks with low

downside correlations, which have low expected returns.

In constructing the CMC factor, we are careful to control for the positive relation shown in

Table (2) between the beta and the downside correlation. The CMC factor extracts the spread

in expected returns due to downside correlation, controlling for the beta. Each month, we place

half of the stocks based on their �’s into a low � group and the other half into a high � group.

Then, within each � group, we rank stocks based on their �� into three groups: a low, a medium

and a high �� groups with the cutoffs at 33.3% and 66.7%. This sorting procedure creates six

portfolios in total.

We calculate monthly value-weighted returns for each of these 6 portfolios. Within the

low � group, the portfolio returns increase from the low �� portfolio to the high �� portfolio,

with an annualized difference of 2.40% (0.20% per month). Moving across the low � group,

portfolio returns of the �� portfolios increase, while the beta remains flat at around � = 0.66.

The return also increases with increasing �� within the high � group. Within the high � group,

the difference in returns of the high �� and low �� portfolios is 3.24% per annum (0.27% per

month), with a t-statistic of 1.98, but the � decreases with increasing ��. Therefore, the higher

returns associated with portfolios with high �� are not rewards for bearing higher market risk,

but are rewards for bearing higher downside correlation.
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For each �� group, we take the simple average across the two � groups and create three

portfolios, which we call the �-balanced �� portfolios. Moving across the �-balanced ��

portfolios, mean returns monotonically increase with ��. This increase is accompanied by a

monotonic decrease, rather than an increase, in beta. We define our downside risk factor, CMC,

as the return on a zero-cost strategy of going long the �-balanced high �� portfolio and shorting

the �-balanced low �� portfolio. This strategy is rebalanced monthly. The return on this strategy

is 2.80% per annum (0.23% per month) with a t-statistic of 2.35 and a p-value of 0.02.

Since we include every firm listed on NYSE/AMEX and NASDAQ, and use daily data, the

impact of small illiquid firms might be a concern. We address this issue in two ways. First,

all of our portfolios are value-weighted, which reduces the influence of smaller firms. Second,

we perform the same sorting procedure as above, but exclude firms that are smaller than the

tenth NYSE percentile. With this alternative procedure, we find that CMC is still statistically

significant with an average monthly return of 0.23% and a t-statistic of 2.04. These checks show

that our results are not biased by small firms.

Table (6) lists the summary statistics for the CMC factor in comparison to the market,

SMB and HML factors of Fama and French (1993), the SKS coskewness factor of Harvey

and Siddique (2000), and the WML momentum factor from Carhart (1997). The CMC factor

has a monthly mean return of 0.23%, which is higher than the mean return of SMB (0.19% per

month) and approximately two-thirds of the mean return of HML (0.32% per month). While

the returns on CMC and HML are statistically significant at the 5% confidence level, the return

on SMB is not statistically significant. CMC has a monthly volatility of 2.06%, which is lower

than the volatilities of SMB (2.93%) and HML (2.65%). CMC also has close to zero skewness,

and it is less autocorrelated (10%) than the Fama-French factors (17% for SMB and 20% for

HML). The Harvey-Siddique SKS factor has a small average return per month (0.10%) and

is not statistically significant. In contrast, the WML factor has the highest average return, over

0.90% per month. However, unlike the other factors, WML is constructed using equal-weighted

portfolios, rather than value-weighted portfolios.

We list the correlation matrix across the various factors in Panel B of Table (6). CMC has

a slightly negative correlation with the market portfolio of –16%, a magnitude less than the

correlation of SMB with the market (32%) and less in absolute value than the correlation of

HML with the market (–40%). CMC is positively correlated with WML (35%). The correlation

matrix shows that SKS and CMC have a correlation of –3%, suggesting that asymmetric

downside correlation risk has a different effect than skewness risk.

Table (6) shows that CMC is quite negatively correlated with SMB (–64%). To allay fears

that CMC is not merely reflecting the inverse of the size effect, we examine the individual
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firm composition of CMC and SMB. On average, 3660 firms are used to construct SMB each

month, of which SMB is long 2755 firms and short 905 firms.2 We find that the overlap of the

firms, that SMB is going long and CMC is going short, constitutes, on average, only 27% of the

total composition of SMB. Thus, the individual firm compositions of SMB and CMC are quite

different. We find that the high negative correlation between the two factors stems from the fact

that SMB performs poorly in the late 80’s and the 90’s, while CMC performs strongly over this

period.

To be sure that CMC is not merely reflecting the information already captured by the market,

SMB, HML and WML, Panel C of Table (6) regresses CMC on these four factors and a constant.

The CMC factor loads negatively on SMB and HML, which is consistent with the correlation

patterns in Panel B and the fact that high downside correlation stocks tend to be large stocks and

growth stocks. The loading of CMC on WML is very small (0.07) compared to the magnitude

of the SMB (-0.44) and HML (-0.21) loadings. Net of these loadings, the intercept term remains

positive and significant, which indicates that CMC is not explained by the other factors. In fact,

the mean return left unexplained increases to 0.33% per month, compared to the unadjusted

mean return of CMC of 0.23% per month.

4.2 Pricing the Downside Correlation Portfolios

The 20 downside correlation portfolios examined in Section 2 cannot be explained by the

market, SMB, HML and WML factors. Our CMC factor ought to explain the variations of these

downside correlation portfolios, since by construction it reflects the spread in expected returns

due to cross-sectional variation in ��. Table (7) revisits the Fama-MacBeth (1973) regression

tests in Section 2 to see if CMC is successful in pricing the downside correlation portfolios.

Model A of Table (7) is the traditional CAPM augmented with the CMC. The estimate of

the premium on CMC is positive and statistically significant. Moreover, the GRS F-test cannot

reject the hypothesis that the market factor augmented with CMC can price the variations in the

downside correlation portfolio returns. The premium on CMC continues to remain positive and

significant after adding the two Fama-French factors in Model B. It is also approximately the

same as the mean CMC premium in Table (6). The GRS test suggests that some of the portfolio

returns are not explained by this model, but this result is only weakly significant (p-value =

0.04). Furthermore, in the presence of the market, the Fama-French factors, and CMC factor,

WML still does not affect the significance of CMC. The GRS test suggests that this model,
2 SMB is long more firms than it is short since the breakpoints are determined using market capitalizations of

NYSE firms, even though the portfolio formation uses all NYSE, AMEX and NASDAQ firms.
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which incorporates CMC, explains the variations in returns of downside correlation portfolios.

In short, CMC successfully prices the downside correlation effect.

4.3 Forecasting Macroeconomic Variables

We briefly explore the relation between downside correlation and the business cycle by

investigating how the downside correlation factor covaries with and macroeconomic variables.

The investigation in this section should be regarded as an exploratory exercise, rather than as

a formal test of the underlying economic determinants of downside risk. Our analysis here

is motivated by studies such as Liew and Vassalou (2000), who show that other return-based

factors, such as the Fama-French (1993) SMB and HML factors, can predict GDP growth and

hence may reflect systematic risk.

We consider six macroeconomic variables which reflect underlying economic activity and

business conditions. Our first two variables are leading indicators of economic activity: the

growth rate in the index of leading economic indicators (LEI) and the growth rate in the index of

Help Wanted Advertising in Newspapers (HELP). We also use the growth rate of total industrial

production (IP). The next three variables measure price and term structure conditions: the CPI

inflation rate, the level of the Fed funds rate (FED) and the term spread between the 10-year

T-bonds and the 3-months T-bills (TERM). All growth rates (including inflation) are computed

as the difference in logs of the index at times t and t� 12, where t is monthly.

To examine the connection between downside risk and macroeconomic variables, we run

two sets of regressions. The first set regresses CMC on lagged macro variables, while the

second set regresses macroeconomic variables on lagged CMC. The first set of regressions are

of the form:

CMCt = a +
3X

i=1

biMACROt�i +
3X

i=1

ciCMCt�i + �t (12)

where we use various macroeconomic variables for MACROt.

Panel A of Table (8) lists the regression results from equation (12). There is no significant

relation between lagged macroeconomic variables and the CMC factor, except for the first lag

of LEI, which is significantly negatively related with CMC. A 1% increase in the growth rate

of LEI predicts a 27 basis point decrease in the premium of the downside correlation factor.

However, the p-value for the joint test (in the last column of Table (8)) that all lagged LEI are

equal to zero fails to reject the null with p-value=0.09. Overall, with the exception of LEI, there

is little evidence of predictive power by macroeconomic variables to forecast CMC returns.
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To explore if the downside correlation factor predicts future movements of macroeconomic

variables we run regressions of the form:

MACROt = a +
3X

i=1

biCMCt�i +
3X

i=1

ciMACROt�i + �t: (13)

We also include lagged macroeconomic variables in the right hand side of the regression since

most of the macroeconomic variables are highly autocorrelated. Panel B of Table (8) lists the

regression results of equation (13). We report only the coefficients on lagged CMC. While the

macroeconomic variables provide little forecasting power for CMC, the CMC factor has some

forecasting ability for future macroeconomic variables. In particular, high CMC forecasts lower

future economic activity (HELP, p-value = 0.00; IP, p-value = 0.03), lower future interest rates

(FED, p-value = 0.01) and lower future term spreads (TERM, p-value = 0.03), where the p-

values refer to a joint test that the three coefficients on lagged CMC in equation (13) are equal

to zero.

In general, these results show that high CMC forecasts economic downturns. The

predictions of high CMC and future low economic activity is seen directly in the negative

coefficients for HELP and IP. Term spreads also tend to be lower in economic recessions.

Estimates of Taylor (1993)-type policy rules on the FED over long samples, where the FED

rate is a linear function of inflation and real activity, show short rates to be lower when output

is low. Hence, the positive correlation of high CMC with future low HELP, low IP, low TERM

and low FED shows that high CMC forecasts economic downturns. In other words, the reward

for holding stocks with high downside risk is greater when future economic prospects turn sour,

perhaps because the incidence of extreme market downside moves increases during recessions.

5 An Application to Pricing the Momentum Effect

That a CMC factor, constructed from the �� portfolios, explains the cross-sectional variation

across �� portfolios is no surprise. Indeed, we would be concerned if the CMC factor could not

price the �� portfolios. As an application of the CMC factor, we demonstrate that CMC has

explanatory power to account for some of the momentum effect.

5.1 Data and Motivation

Why might we expect CMC to help explain some of the momentum effect? We first present

evidence that momentum strategies tend to perform poorly when the market makes extreme
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downward moves. To show this, we work with Jegadeesh and Titman (1993)’s momentum

portfolios, corresponding to the J=6 month formation period, which is standard in the literature

(Chordia and Shivakumar, 2001). After stocks are sorted into deciles based on their past 6

month returns, they are held for the next K months holding periods, where K = 3, 6, 9 or

12. We form an equal-weighted portfolio within each decile and calculate overlapping holding

period returns for the next K months.

Figure (3) plots the average returns of the 40 portfolios sorted on past 6 months returns. The

average returns are shown with *’s. There are 10 portfolios corresponding to each of the K=3,

6, 9 and 12 months holding periods. Figure (3) shows average returns to be increasing across

the deciles (from losers to winners) and are roughly the same for each holding period K. The

differences in returns between the winner portfolio (decile 10) and the loser portfolio (decile 1)

are 0.54, 0.77, 0.86 and 0.68 percent per month, with corresponding t-statistics of 1.88, 3.00,

3.87 and 3.22, for K=3, 6, 9 and 12 respectively. Hence, the return differences between winners

and losers are significant at the 1% level except the momentum strategy corresponding to K=3.

Figure (3) also shows the �� of the momentum portfolios, which increase going from the losers

to the winners, except at the highest winner decile. Hence, the momentum strategies generally

have a positive relation with downside correlation exposure.

Panel A of Table (9) shows the exposure of momentum strategies to downside risk. This

table shows the Fama-French alphas for the losers (first decile) and winners (tenth decile) for

each holding period K. The exposure of the momentum strategies to downside risk is revealed

by comparing the alphas from the full sample to the alphas from a subsample where the market

experiences extreme downward moves. An extreme downward move is defined to be a move

that is more negative than two standard deviations below the unconditional mean. There are 41

such observations out of 432 total months.

During the full sample, the Fama-French alphas for winners are higher than losers. However,

during periods of market distress, this pattern is reversed so winners perform worse than losers.

The very few observations during these extreme down periods means that we should be very

reluctant to conclude that winners have higher downside risk than losers, especially given the

very low levels of the t-statistics. Nevertheless, the point estimates do show that losers perform

better than winners during market downturns.3

We observe the same effect for the downside correlation portfolios from Table (2) in Panel

B. High downside correlation stocks have higher unconditional returns than low downside
3 For periods when the market return is less than two standard deviations below the mean, although winners

under-perform losers, the pattern moving across the decile portfolios from losers to winners is not monotonic.

However, the 10th decile (winners) always underperforms the bottom decile (losers) across all K holding periods.
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correlation stocks to compensate for their much lower returns when the market crashes. If

arbitraguers are averse to downside risk in the momentum strategies, they would demand

compensation into order to bear such risk. We hope that the CMC factor may pick up some

of the downside exposure of the momentum portfolios. Indeed, Table (9) suggests that the

momentum portfolios and the downside correlation portfolios both reflect downside risk.

Panel C of Table (9) examines the economic reduction in the momentum premium by adding

a CMC factor. Model A of Table (9) regresses WML onto a constant, the MKT and the CMC

factor. This regression has an R2 of 12%, and a significantly positive loading. The CMC factor

reduces the momentum raw return (0.90% per month) to 0.72% per month, a reduction of 2.18%

per annum. In Model B, the Fama-French (1993) WML alpha is 1.05% per month, and adding

the CMC factor reduces this, in Model C, to 0.86% per month, which is a reduction of 2.30%

per annum. Hence, while the momentum effect cannot be completely explained by downside

correlation, Panel C of Table (9) shows that CMC has some explanatory power for WML which

the other factors (MKT, SMB, HML) do not have.

5.2 Fama-MacBeth (1973) Cross-Sectional Test

We now conduct formal cross-sectional estimations of the relation between downside risk and

expected returns of momentum returns in Table (10) with Fama-MacBeth tests. Using data on

the 40 momentum portfolios corresponding to the J=6 formation period, we first examine the

Fama-French (1993) model in Model A. The estimates of the risk premia for SMB and HML

are negative, which reflect the fact that the loadings on SMB and HML go the wrong way for

the momentum portfolios.

In comparison, Model B adds CMC as a factor together with the market. The estimated

premium on CMC is 8.76% per annum (0.73 per month) and statistically significant at the 5%

level. These results do not change when SMB and HML are added in Model C. In Model D, we

augment the Carhart (1997) four-factor model (MKT, SMB, HML and WML) with CMC. The

factor premia on WML and CMC are both significant. The fact that CMC remains significant

at the 5% level (t-stat=2.01) in the presence of WML shows that CMC is picking up some of

the momentum effect reflecting downside risk. Moreover, the magnitude of the CMC factor

loading remains relatively unchanged after adding WML.

Figure (4) graphs the loadings of each momentum portfolio on MKT, SMB, HML and CMC.

The loadings are estimated from the time-series regressions of the momentum portfolios on the

factors from the first step of the Fama-MacBeth (1973) procedure. We see that for each set

of portfolios, as we go from the past loser portfolio (decile 1) to the past winner portfolio
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(decile 10), the loadings on the market portfolio remain flat, so that beta has little explanatory

power. The loadings on SMB decrease from the losers to the winners, except for the last two

deciles. Similarly, the loadings on the HML factor also go in the wrong direction, decreasing

monotonically from the losers to the winners.

In contrast to the decreasing loadings on the SMB and HML factors, the loadings on the

CMC factor in Figure (4) almost monotonically increase from strongly negative for the past

loser portfolios to slightly positive for the past winner portfolios. The increasing loadings on

CMC across the decile portfolios for each holding period K are consistent with the increasing

�� statistics across the deciles in Figure (3). Winner portfolios have higher ��, higher loadings

on CMC, and higher expected returns. The negative loadings for loser stocks imply that losers

have higher downside correlation exposure than winners. This reflects the evidence in Table

(9), which shows that past winner stocks do poorly when the market has large moves on the

downside, while past loser stocks perform better in these extreme periods.

5.3 GMM Hypothesis Tests

Using GMM cross-sectional estimations (described in the Appendix), we can conduct some

additional hypothesis tests for the goodness of fit for the various models in Table (10) to price

the momentum effect. Taking Model C as an unconstrained model and using its weighting

matrix to re-estimate Model A, we can conduct a �2 over-identification test. This tests rejects

the null hypothesis of the Fama-French model with a p-value=0.02. Hence, CMC does provide

additional explanatory power for the cross-section of momentum portfolios which the Fama-

French model does not provide. Model D of Table (10) nests Model C, which uses MKT, SMB,

HML and CMC factors. We run a �2 over-identification test with the null of Model C against

the alternative of Model D, which rejects with a p-value of 0.01. Hence, we conclude that

WML still has further explanatory power, in the presence of CMC, to price the cross-section of

momentum portfolios.

We graph the average pricing errors for the models in Figure (5), following Hodrick and

Zhang (2001). The pricing errors are computed using the weighting matrix, WT = E[RtR
0

t]
�1,

where Rt is a vector of gross returns of the base assets. Since the same weighting matrix

is used across all of the models, we can compare the differences in the pricing errors for

different models. Figure (5) displays each momentum portfolio on the x-axis, where the first

ten portfolios correspond to the K = 3 month holding period, the second ten to the K = 6

month holding period, the third ten to the K = 9 month holding period, and finally the fourth

ten to the K = 12 holding period. The 41st asset is the risk-free asset. The figure plots two
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standard error bounds in solid lines, and the pricing errors for each asset in *’s.

Figure (5) shows that the CAPM has most of its pricing errors outside the two standard

error bands and shows that the loser portfolios are the most difficult for the CAPM to price.

The Fama-French model has most difficulty pricing past winners; the pricing errors of every

highest winner portfolio lies outside the two standard error bands. The model using MKT and

CMC factors is the only model that has all the pricing errors within two standard error bands.

However, adding CMC to the Fama French model or the Carhart model does not change the

pricing errors of the assets very much.

While Figure (5) can give us a visual representation of the pricing errors, we can formally

test if all the pricing errors are zero by using a Hansen-Jagannathan (1997) (HJ) test (see the

Appendix for further details). This tests overwhelmingly rejects, both asymptotically and with

small-sample simulations, the null that the pricing erros are jointly zero for all the models.

Although all pricing errors for the model of MKT and CMC fall within the two standard error

bands, the HJ tests reject this model because because the HJ distance does not assign an equal

weight to all the portfolios in the test. Hence, while momentum portfolios do seem to have

exposure to downside risk, the CMC factor only modestly reduces the momentum premium by

2.18%, and although it comes out significant in cross-sectional tests with momentum assets,

CMC cannot completely account for all the momentum effect.

6 Conclusion

We find that stocks with high downside correlations have higher expected returns than stocks

with low downside correlations. The portfolio of stocks with the greatest downside correlations

outperforms the portfolio of stocks with the lowest downside correlations by 4.91% per annum.

Downside correlation is distinct from market risk and liquidity risk, and it is not mechanically

linked to past returns. Moreover, controlling for the market beta, the size effect and the book-to-

market effect increases the difference in the returns between the highest and the lowest downside

correlation portfolios to 6.55% per annum. To capture this asymmetry, we construct a downside

correlation factor (CMC) that goes long stocks with high downside correlations and goes short

stocks with low downside correlations. The CMC factor is priced by portfolios of stocks sorted

by downside correlations, and exposure to this downside correlation factor helps explain some

of the profitability of momentum strategies.

While most economic models would suggest that both the magnitude and the direction of

risk ought to matter, our downside correlation measure only captures the direction of downside
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comovements, but not the magnitude of the comovements. The decomposition of the betas

show that the action of total and market volatilities confound the magnitudes of joint downside

movements. In particular, the ratio of total to market volatility decreases on the downside,

which causes conditional betas to exhibit little asymmetry across the downside and the upside.

In contrast, conditional correlations are immune to these effects and exhibit highly asymmetric

patterns across downside and upside market movements. Hence, conditional correlations appear

to be a cleaner measure of asymmetric exposure to risk than conditional betas.

While we show that high downside correlation stocks command high expected returns that

cannot be accounted for by the standard risk factors, our empirical work leaves unexplained

what underlying economic mechanisms cause some stocks to exhibit greater downside risk,

and why investors demand compensation for exposures to such risk. A more difficult task

is capturing the interaction between idiosyncratic and market volatility across up and down

markets which causes conditional betas to have little asymmetry across downside and upside

markets, while conditional correlations exhibit pronounced asymmetry across downside and

upside markets. Economies with frictions and hidden information (Hong and Stein, 2001) or

with agents facing binding wealth constraints (Kyle and Xiong, 2001) have both significant

direction and magnitude effects. Although representative agent models with asymmetric utility

functions, like first-order risk aversion (Bekaert, Hodrick and Marshall, 1997) or loss aversion

(Barberis, Huang and Santos, 2001), have not been calibrated in the cross-section, these models

would also assign a larger role to conditional betas than to conditional correlations.
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Appendix

A Data and Portfolio Construction

Data Sources
We use data from the Center for Research in Security Prices (CRSP) to construct portfolios of stocks sorted by
various characteristics of returns. We confine our attention to ordinary common stocks listsed on NYSE, AMEX
and NASDAQ, omitting ADRs, REITs, closed-end funds, foreign firms and other securities which do not have a
CRSP share type code of 10 or 11. We use daily returns from CRSP for the period covering January 1st, 1964 to
December 31st, 1999, including NASDAQ data which is only available post-1972. We use the one-month risk-free
rate from CRSP and take CRSP’s value-weighted returns of all stocks as the market portfolio. All our returns are
expressed as continuously compounded returns.

The 48 industry portfolios are from Fama and French (1997) and are obtained from Kenneth French’s website
at http://web.mit.edu/kfrench/www/data library.html. The Fama and French (1993) factors, SMB and HML, are
also from the data library at Kenneth French’s website.

Higher Moment Portfolios
We construct portfolios based on correlations between asset i’s excess return r it and the market’s excess return
rmt conditional on downside moves of the market (��) and on upside moves of the market (�+). We also
constuct portfolios based on coskewness, cokurtosis, �, � conditional on downside market movements (� �), and
� conditional on upside market movements (�+).

Coskewness is defined, following Harvey and Siddique (2000), as:

coskew =
E[�i;t�

2
m;t]q

E[�2i;t]E[�
2
m;t]

; (A-1)

where �i;t = ri;t � �i � �iMKTt, is the residual from the regression of ri;t on the contemporaneous excess
market return, and �m;t is the residual from the regression of the market excess return on a constant. Similar to the
definition of coskewness in equation (A-1), we define cokurtosis as:

cokurt =
E[�i;t�

3
m;t]q

E[�2i;t]
�
E[�2m;t]

� 3
2

: (A-2)

At the beginning of each month, we calculate each stock’s moment measures using the past year’s daily log
returns from the CRSP daily file. For the moments which condition on downside or upside movements, we define
an observation at time t to be a downside (upside) market movement if the excess market return at t is less than or
equal to (greater than or equal to) the average excess market return during the past one year period in consideration.
We require a stock to have at least 220 observations to be included in the calculation. These moment measures are
then used to sort the stocks into deciles and a value-weighted return is calculated for all stocks in each decile. The
portfolios are rebalanced monthly.

SKS and WML Factor Construction
Harvey and Siddique (2000) use 60 months of data to compute the coskewness defined in equation (A-1) for
all stocks in NYSE, AMEX and NASDAQ. Stocks are sorted in order of increasing negative coskewness. The
coskewness factor SKS is the value-weighted average returns of firms in the top 3 deciles (with the most negative
coskewness) minus the value-weighted average return of firms in the bottom 3 deciles (stocks with the most positive
coskewness) in the 61st month.

Following Carhart (1997), we construct WML as the equally-weighted average of firms with the highest 30
percent eleven-month returns lagged one month minus the equally-weighted average of firms with the lowest 30
percent eleven-month returns lagged one month. In constructing WML, all stocks in NYSE, AMEX and NASDAQ
are used and portfolios are rebalanced monthly.
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Liquidity Factor and Liquidity Betas
We follow Pástor and Stambaugh (2001) to construct an aggregate liquidity measure, L. Stock return and volume
data are obtained from CRSP. NASDAQ stocks are excluded in the construction of the aggregate liquidity measure.
The liquidity estimate, 
i;t, for an individual stock i in month t is the ordinary least squares (OLS) estimate of 
 i;t
in the following regression:

rei;d+1;t = �i;t + �i;t�ri;d;t + 
i;tsign
�
rei;d;t

�
vi;d;t + �i;d+1;t; d = 1; : : : ; D: (A-3)

In equation (A-3), �ri;d;t is the raw return on stock i on day d of month t, r ei;d;t = ri;d;t � rm;d;t is the stock return
in excess of the market return, and vi;d;t is the dollar volume for stock i on day d of month t. The market return
on day on day d of month t, rm;d;t, is taken as the return on the CRSP value-weighted market portfolio. A stock’s
liquidity estimate, 
i;t, is computed in a given month only if there are at least 15 consecutive observations, and if
the stock has a month-end share prices of greater than $5 and less than $1000.

The aggregate liquidity measure,L, is computed based on the liquidity estimates, 
 i;t, of individual firms listed
on NYSE and AMEX from August 1962 to December 1992. Only the individual liquidity estimates that meet the
above criteria is used. To construct the innovations in aggregate liquidity, we follow Pástor and Stambaugh and
first form the scaled monthly difference:

�
̂t =

�
mt

m1

�
1

N

NX
i=1

(
i;t � 
i;t�1); (A-4)

where N is the number of available stocks at month t, m t is the total dollar value of the included stocks at the end
of month t� 1, and m1 is the total dollar value of the stocks at the end of July 1962. The innovations in liquidity
are computed as the residuals in the following regression:

�
̂t = a+ b�
̂t�1 + c (mt=m1) 
̂t�1 + ut: (A-5)

Finally, the aggregate liquidity measure, Lt, is taken to be the fitted residuals, Lt = ût.
To calculate the liquidity betas for individual stocks, at the end of each month between 1968 and 1999, we

identify stocks listed on NYSE, AMEX and NASDAQ with at least five years of monthly returns. For each stock,
we estimate a liquidity beta, �Li , by running the following regression using the most recent five years of monthly
data:

ri;t = �0i + �Li Lt + �Mi MKTt + �Si SMBt + �Hi HMLt + �i;t; (A-6)

where ri;t denotes asset i’s excess return and Lt is the innovation in aggregate liquidity.

Momentum Portfolios
To construct the momentum portfolios of Jegadeesh and Titman (1993), we sort stocks into portfolios based on
their returns over the past 6 months. We consider holding period of 3, 6, 9 and 12 months. This procedure yields
4 strategies and 40 portfolios in total. We illustrate the construction of the portfolios with the example of the ’6-6’
strategies. To construct the ’6-6’ deciles, we sort our stocks based upon the past six-months returns of all stocks
in NYSE and AMEX. Each month, an equal-weighted portfolio is formed based on six-months returns ending one
month prior. Similarly, equal-weighted portfolios are formed based on past returns that ended one months prior,
three months prior, and so on up to six months prior. We then take the simple average of six such portfolios. Hence,
our first momentum portfolio consists of 1=6 of the returns of the worst performers one month ago, plus 1=6 of the
returns of the worst performers two months ago, etc.

Macroeconomic Variables
We use the following macroeconomic variables from the Federal Reserve Bank of St. Louis: the growth rate
in the index of leading economic indicators (LEI), the growth rate in the index of Help Wanted Advertising in
Newspapers (HELP), the growth rate of total industrial production (IP), the Consumer Price Index inflation rate
(CPI), the level of the Fed funds rate (FED), and the term spread between the 10-year T-bonds and the 3-months
T-bills (TERM). All growth rates (including inflation) are computed as the difference in logs of the index at times
t and t� 12, where t is monthly.

27



B Fama-MacBeth and GMM Cross-Sectional Tests

Fama-MacBeth (1973) Cross-Sectional Tests
We consider linear cross-sectional regressional models of the form:

E(rit) = �0 + �0�i; (B-1)

in which �0 is a scalar, � is a M � 1 vector of factor premia, and �i is an M � 1 vector of factor loadings for
portfolio i. The Fama-MacBeth (1973) is a two-step cross-sectional estimation procedure.

In the first step, we use the entire sample to estimate the factor loadings, � i:

rit = �i + F 0

t�i + "it; t = 1; 2; :::T; (B-2)

where �i is a scalar and Ft is a M � 1 vector of factors. In the second step, we run a cross-sectional regression at
each time t over N portfolios, holding the � i’s fixed at their estimated values, �̂i, in equation (B-2):

rit = �0 + �0�̂i + uit; i = 1; 2; :::N: (B-3)

The factor premia, �, are estimated as the averages of the cross-sectional regression estimates:

�̂ =
1

T

TX
t=1

�̂t: (B-4)

The covariance matrix of �, ��, is estimated by:

�̂� =
1

T 2

TX
t=1

(�̂t � ��)(�̂t � ��)0; (B-5)

where �� is the mean of �.
Since the factor loadings are estimated in the first stage and these loadings are used as independent variables

in the second stage, there is an errors-in-variables problem. To remedy this, we use Shanken’s (1992) method to
adjust the standard errors by multiplying �̂� with the adjustment factor (1+ �̂0�̂�1

f �̂)�1, where �̂f is the estimated
covariance matrix of the factors Ft.

GMM Cross-Sectional Tests
The standard Euler equation for a gross return, R it, is given by:

E(mtRit) = 1: (B-6)

Linear factor models assume that the pricing kernel can be written as a linear combination of factors:

mt = Æ0 + Æ01Ft; (B-7)

where Ft is a M � 1 vector of factors, Æ0 is a scalar, and Æ1 is a M � 1 vector of coefficients. The representation
in equation (B-7) is equivalent to a linear beta pricing model:

E(Rit) = �0 + �0�i; (B-8)

which is analogous to equation (B-1) for excess returns. The constant � 0 is given by:

�0 =
1

E(mt)
=

1

Æ0 + Æ01E(Ft)
;

the factor loadings, �i, are given by:

�i = cov(Ft; F 0

t )
�1cov(Ft; Rit);

and the factor premia, �, are given by:

� = �
1

Æ0
cov(Ft; F 0

t )Æ1:
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To test whether a factor j is priced, we test the null hypothesis H0 : �j = 0.
Letting Rt denote an N � 1 vector of gross returns Rt = (R1t; : : : ; RNt)

0, and denoting the parameters of the
pricing kernel as Æ = (Æ0; Æ

0

1)
0, the sample pricing error is:

gT (Æ) =
1

T

TX
t=1

(mtRt � 1): (B-9)

The GMM estimate of Æ is the solution to:

min
Æ

J = T � g0TWT gT ; (B-10)

where WT is a weighting matrix.

Hansen-Jagannathan (1997) Test
Jagannathan and Wang (1996) derive the asymptotic distribution of the HJ distance metric:

HJ =
p
gT (Æ)0E[RtR0

t]
�1gT (Æ); (B-11)

which can be interpreted as the least-square distance between a given pricing kernel and the closest point in the set
of the pricing kernels that can price the base assets correctly. The asymptotic distribution of T � (HJ) 2 involves
a weighted sum of (N �K � 1) �21 statistics. The weights are the N �K � 1 non-zero eigenvalues of:

A = S
1

2

TW
1

2

0

T

h
I �W

1

2

T DT (D
0

TWTDT )
�1D0

TW
1

2

0

T

i�1
W

1

2

T S
1

2

0

T ;

where S
1

2

T and W
1

2

T are the upper-triangular Cholesky decompositions of ST and WT respectively, and DT = @gT
@Æ

.
The matrix ST is the optimal weighting matrix, where W �

T = S�1T = [T � cov(gT ; g0T )]
�1. Jagannathan and Wang

show that A has exactly N �K � 1 positive eigenvalues �1; : : : ; �N�K�1. The asymptotic distribution of the HJ
distance metric is:

T � (HJ)2 !

N�K�1X
j

�j�
2
1

as T !1. We simulate the HJ statistic 100,000 times to compute the asymtotic p-value of the HJ distance.
To calculate a small sample p-value for the HJ distance, we assume that the linear factor model holds and

simulate a data generating process (DGP) with 432 observations, the same length as in our samples. The DGP
takes the form:

ri;t = rft�1 + �0iFt + �it; (B-12)

where ri;t is the return on the i-th portfolio, rft is the risk-free rate, �i is an M�1 vector of factor loadings, and Ft
is the M � 1 vector of factors. We assume that the risk-free rate and the factors follow a first-order VAR process.
Let Xt = (rft ; Ft)

0, and Xt follows:

Xt = �+AXt�1 + ut; (B-13)

where ut � N(0;�). We estimate this VAR system and use the estimates �̂, Â and �̂ as the parameters for
our factor generating process. In each simulation, we generate 432 observations of factors and the risk-free rate
from the VAR system in equation (B-13). For the portfolio returns, we use the sample regression coefficient of
each portfolio return on the factors, �̂i, as our factor loadings. We assume the error terms of the base assets, � t,
follow IID multivariate normal distributions with mean zero and covariance matrix, �̂r � �̂0�̂F �̂, where �̂r is the
covariance matrix of the assets and �̂F is the covariance matrix of the factors.

For each model, we simulate 5000 time-series as described above and compute the HJ distance for each
simulation run. We then count the percentage of these HJ distances that are larger than the actual HJ distance from
real data and denote this ratio empirical p-value. For each simulation run, we also compute the theoretic p-value
which is calculated from the asymptotic distribution.
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Table 1: Portfolios Sorted on Past �, �� and �+

Panel A: Portfolios Sorted on Past �

Portfolio Mean Std Auto � High–Low t-stat
1 Low � 0.90 3.72 0.13 0.42 0.23 0.70
2 0.93 3.19 0.20 0.49
3 1.01 3.33 0.18 0.59
4 0.95 3.62 0.14 0.70
5 1.13 3.78 0.08 0.76
6 1.02 3.84 0.06 0.79
7 1.00 4.37 0.07 0.93
8 0.97 4.87 0.07 1.04
9 1.07 5.80 0.08 1.23
10 High � 1.13 7.63 0.05 1.57

Panel B: Portfolios Sorted on Past ��

Portfolio Mean Std Auto � �� �� k� High–Low t-stat
1 Low�� 0.78 4.21 0.16 0.67 0.89 0.71 1.26 0.31 1.04
2 0.93 3.74 0.14 0.68 0.74 0.73 1.02
3 0.99 3.71 0.09 0.73 0.82 0.83 0.98
4 1.09 3.92 0.05 0.80 0.88 0.89 0.99
5 1.05 4.00 0.06 0.85 0.89 0.91 0.98
6 1.06 4.52 0.07 0.98 0.98 0.93 1.06
7 1.11 4.82 0.04 1.04 1.02 0.92 1.11
8 1.24 5.39 0.05 1.17 1.12 0.92 1.21
9 1.22 6.26 0.04 1.32 1.30 0.89 1.46
10 High �� 1.09 7.81 0.08 1.57 1.52 0.84 1.82

Panel C: Portfolios Sorted on Past �+

Portfolio Mean Std Auto � �+ �+ k+ High–Low t-stat
1 Low �+ 1.05 5.46 0.16 0.93 0.77 0.46 1.67 -0.05 -0.21
2 1.06 4.33 0.19 0.83 0.67 0.59 1.14
3 1.05 4.06 0.16 0.80 0.69 0.67 1.04
4 1.01 4.10 0.11 0.83 0.82 0.75 1.09
5 0.98 4.03 0.13 0.84 0.79 0.75 1.05
6 1.05 4.07 0.06 0.87 0.86 0.84 1.02
7 1.07 4.35 0.06 0.94 0.90 0.86 1.05
8 1.02 4.65 0.04 1.01 0.98 0.88 1.11
9 1.12 5.25 0.05 1.12 1.13 0.86 1.31
10 High �+ 1.00 6.77 0.06 1.41 1.45 0.80 1.81

The table lists summary statistics for value-weighted �, �� and �+ portfolios at a monthly frequency, where
�� and �+ are defined in equation (3), setting � = MKT . For each month, we calculate � (� �, �+ )
of all stocks based on daily continuously compounded returns over the past year. We rank the stocks into
deciles (1–10), and calculate the value-weighted simple percentage return over the next month. We rebalance
the portfolios monthly. Means and standard deviations are in percentage terms per month. Std denotes the
standard deviation (volatility), Auto denotes the first autocorrelation, and � is post-formation the beta of the
portfolio. The columns labeled �� (�+) and �� (�+) show the post-formation downside (upside) betas and
downside (upside) correlations of the portfolios. The column labeled k + (k�) lists the ratio of the volatility
of the portfolio to the volatility of the market, both conditioning on the downside (upside). High–Low is the
mean return difference between portfolio 10 and portfolio 1 and t-stat gives the t-statistic for this difference.
T-statistics are computed using Newey-West (1987) heteroskedastic-robust standard errors with 3 lags. The
sample period is from January 1964 to December 1999.

32



Table 2: Portfolios Sorted on Conditional Correlations

Panel A: Portfolios Sorted on Past ��

Portfolio Mean Std Auto � FF � Size B/M Lev �� ��

1 Low �� 0.77 4.18 0.15 0.69 –0.37 2.61 0.63 4.96 0.74 0.94
2 0.88 4.34 0.17 0.81 –0.30 2.92 0.62 4.71 0.80 0.97
3 0.87 4.32 0.15 0.83 –0.31 3.19 0.60 4.88 0.82 0.95
4 0.94 4.39 0.15 0.87 –0.24 3.46 0.58 4.38 0.83 0.97
5 0.97 4.39 0.10 0.90 –0.19 3.74 0.56 5.15 0.85 0.95
6 1.00 4.45 0.09 0.94 –0.16 4.04 0.53 4.49 0.90 1.01
7 1.00 4.64 0.09 1.00 –0.15 4.39 0.50 7.06 0.92 1.02
8 1.03 4.58 0.08 1.00 –0.10 4.82 0.48 4.04 0.94 1.05
9 1.12 4.77 0.02 1.05 0.02 5.36 0.46 5.42 0.96 1.08
10 High �� 1.17 4.76 0.01 1.04 0.16 6.38 0.39 4.40 0.94 0.97

High - Low 0.40 2.26

Panel B: Portfolios Sorted on Past �+

Portfolio Mean Std Auto � FF � Size B/M Lev �� ��

1 Low �+ 1.13 4.56 0.17 0.82 0.02 2.88 0.60 7.52 0.50 0.63
2 1.05 4.63 0.19 0.90 –0.13 3.08 0.59 6.18 0.63 0.78
3 1.09 4.61 0.16 0.92 –0.10 3.24 0.58 4.51 0.68 0.82
4 1.06 4.67 0.15 0.94 –0.13 3.44 0.56 4.57 0.70 0.85
5 0.99 4.62 0.14 0.95 –0.18 3.66 0.54 4.47 0.76 0.91
6 1.03 4.62 0.12 0.97 –0.17 3.91 0.54 4.42 0.78 0.90
7 1.00 4.70 0.09 1.01 –0.18 4.23 0.52 4.84 0.84 0.97
8 1.11 4.67 0.08 1.01 –0.06 4.65 0.52 4.25 0.85 0.96
9 1.12 4.63 0.07 1.02 –0.01 5.27 0.48 4.71 0.92 1.02
10 High �+ 1.07 4.52 0.00 1.00 0.07 6.65 0.36 4.35 0.95 1.06

High - Low –0.06 –0.38

The table lists summary statistics of the value-weighted �� and �+ portfolios at a monthly frequency, where
�� and �+ are defined in equation (5), setting � =MKT . For each month, we calculate �� (�+) of all stocks
based on daily continuously compounded returns over the past year. We rank the stocks into deciles (1–10),
and calculate the value-weighted simple percentage return over the next month. We rebalance the portfolios
at a monthly frequency. Means and standard deviations are in percentage terms per month. Std denotes the
standard deviation (volatility), Auto denotes the first autocorrelation, and � is the post-formation beta of the
portfolio with respect to the market portfolio. The column labeled FF � lists the � from a regression of the
excess �� portfolio return on the Fama-French (1993) model at a monthly frequency. At the beginning of
each month t, we compute each portfolio’s simple average log market capitalization in millions (size) and
value-weighted book-to-market ratio (B/M). The column Lev is the simple average of firms leverage ratio
which is defined as the ratio of book value of asset to book value of equity. The columns labeled � � (�+)
and �� (�+) show the post-formation downside (upside) correlations and downside (upside) betas of the
portfolios. High–Low is the mean return difference between portfolio 10 and portfolio 1 and t-stat gives
the t-statistic for this difference. T-statistics are computed using Newey-West (1987) heteroskedastic-robust
standard errors with 3 lags. The sample period is from January 1964 to December 1999.
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Table 3: Pricing the Downside Correlation Portfolios (1)

Factor Premiums �

�0 MKT SMB HML WML GRS Test

Model A: Fama-French Model

Premium (�) 0.54 0.65 -0.46 0.06 3.24
t-stat 2.41� 0.20 -1.78 0.19 p-val=0.00��

Model B: Fama-French Factors and WML

Premium (�) 0.49 0.12 -0.43 0.13 0.69 2.31
t-stat 2.03� 0.36 -1.60 0.39 0.99 p-val=0.00 ��

The table shows the results from Fama-MacBeth (1973) regression tests on 20 downside correlation
portfolios. These portfolios are formed in the following fashion. Stocks are first sorted into two groups
according to their past beta over the past year, using daily returns (high beta versus low beta). Each group
consists of one half of all firms. Then, within each beta group, we rank stocks based on their � �, also
computed using daily data over the past year into decile portfolios. This gives us 2 (�) � 10 (� �) portfolios,
making a total of twenty downside correlation portfolios. MKT is the CRSP value-weighted returns of all
stocks. SMB and HML are the size and the book-to-market factors (constructed by Fama and French (1993)),
WML is the return on the zero-cost strategy of going long past winners and shorting past losers (constructed
following Carhart (1997)). T-statistics are computed using Shanken (1992) adjusted standard errors. GRS
denotes the F-test of Gibbons, Ross and Shanken (1989) testing the hypothesis that the �’s of all 20 portfolios
are jointly zero. T-statistics that are significant at the 5% (1%) level are denoted with * (**). The sample
period is from January 1964 to December 1999.

Table 4: Subsample Analysis of �� Portfolios High - Low �’s

FF FF + WML
10-1 t-stat 10-1 t-stat

Full Sample 0.56 4.73 0.44 3.45

Two Subsamples
Jan 1964 - Dec 1981 0.44 2.66 0.32 1.84
Jan 1982 - Dec 1999 0.66 3.97 0.52 2.90

NBER Business Cycles
Expansions 0.44 3.59 0.28 2.10
Recessions 1.13 3.55 1.14 3.65

We report the difference in monthly �’s for the tenth and the first decile beta-controlled �� portfolios, with t-
statistics computed using Newey-West (1987) heteroskedastic-robust standard errors with 3 lags. FF denotes
the Fama and French (1993) model, and FF+WML denotes the Fama-French model augmented with Carhart
(1997)’s WML momentum factor.
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Table 5: Downside Correlation Controlling for Past Returns and Liquidity

Panel A: Downside Correlation Portfolios Controlling for Past Returns

a b s h t(a) t(b) t(s) t(h) R2

1 Low �� -0.40 0.80 0.69 0.41 -5.00 35.02 18.30 11.58 0.88
2 -0.40 0.90 0.60 0.34 -5.19 36.09 15.72 7.22 0.91
3 -0.27 0.99 0.46 0.23 -3.79 42.29 12.37 4.67 0.93
4 -0.17 1.07 0.32 0.12 -2.49 50.12 8.80 2.60 0.94
5 High �� -0.07 1.10 0.11 -0.10 -1.09 59.96 3.77 -2.93 0.95

a5-a1 = 0.33 t-stat = 3.03

Panel B: Downside Correlation Portfolios Controlling for Liquidity

a b s h t(a) t(b) t(s) t(h) R2

1 Low �� -0.18 0.81 0.54 0.45 -2.38 30.89 12.64 12.69 0.86
2 -0.17 0.91 0.44 0.37 -2.14 36.51 11.32 7.29 0.91
3 -0.12 0.98 0.26 0.23 -1.67 46.77 8.00 4.90 0.93
4 -0.05 1.02 0.11 0.10 -0.76 60.21 3.93 2.68 0.96
5 High �� 0.08 1.07 -0.13 -0.13 1.80 90.83 -7.70 -4.70 0.98

a5-a1 = 0.26 t-stat = 2.62

This table shows the time-series regressions of excess returns on portfolios formed by a double sort that
controls for past returns and a double sort that controls for liquidity. In Panel A, we first sort stocks
into quintiles by their past 6 months returns (momentum). Then, we sort stocks within each past return
quintiles into additional quintiles according to ��. The intersection of these quintiles forms 25 portfolios.
The portfolios in Panel A are the averages across past return quintiles of the portfolios sorted by � �.
In Panel B, we sort stocks into quintiles by �L and independently sort stocks into separate quintiles
according to ��. The intersection of these quintiles forms 25 portfolios. The portfolios in Panel B are
the averages across �L quintiles of the portfolios sorted by ��. In both Panel A and Panel B, we report
the coefficients from a time-series regression of the portfolio returns onto the Fama-French (1993) factors:
rit = ai+ biMKTt+ siSMBt+hiHMLt+ �it. Columns labeled t() show the t-statistics of the regression
coefficients computed using Newey-West (1987) heteroskedastic-robust standard errors with 3 lags. The
regression R2 is adjusted for the number of degrees of freedom. January 1968 to December 1999. a 5-a1 is
the difference in the alphas a between the 5th quintile and the first quintile.
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Table 6: Summary Statistics of the Factors

Panel A: Summary Statistics

Factor Mean Std Skew Kurt Auto
MKT 0.55� 4.40 –0.51 5.50 0.06
SMB 0.19 2.93 0.17 3.84 0.17
HML 0.32� 2.65 –0.12 3.93 0.20
WML 0.90�� 3.88 –1.05 7.08 0.00
SKS 0.10 2.26 0.69 7.45 0.08
CMC 0.23� 2.06 0.04 5.41 0.10

Panel B: Correlation Matrix

MKT SMB HML WML SKS CMC
MKT 1.00
SMB 0.32 1.00
HML –0.40 –0.16 1.00
WML 0.00 –0.27 –0.14 1.00
SKS 0.13 0.08 0.03 –0.01 1.00
CMC –0.16 –0.64 –0.17 0.35 –0.03 1.00

Panel C: Regression of CMC onto Various Factors

Constant MKT SMB HML WML
coef 0.33 -0.03 -0.44 -0.21 0.07
t-stat 4.02�� -1.47 -11.02�� -5.84�� 2.65��

Panel A shows the summary statistics of the factors. MKT is the CRSP value-weighted returns of all stocks.
SMB and HML are the size and the book-to-market factors (constructed by Fama and French (1993)), WML is
the return on the zero-cost strategy of going long past winners and shorting past losers (constructed following
Carhart (1997)), and SKS is the return on going long stocks with the most negative past coskewness and
shorting stocks with the most positive past coskewness (constructed following Harvey and Siddique (2000)).
CMC is the return on a portfolio going long stocks with the highest past downside correlation and shorting
stocks with the lowest past downside correlation. The first two columns show the means and the standard
deviations of the factors, expressed as monthly percentages. Skew and Kurt are the skewness and kurtosis of
the portfolio returns. Auto refers to first-order autocorrelation. Factors with statistically significant means at
the 5% (1%) level are denoted with * (**), using heteroskedastic-robust Newey-West (1987) standard errors
with 3 lags. The correlation matrix between the factors is reported in Panel B. Panel C reports the regression
of CMC onto MKT, SMB, HML and WML factors, with t-statistics computed using 3 Newey-West lags. T-
statistics that are significant at the 5% (1%) level are denoted with * (**). The sample period is from January
1964 to December 1999.
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Table 7: Pricing the Downside Correlation Portfolios (2)

Factor Premiums �

�0 MKT SMB HML WML CMC GRS Test

Model A: MKT and CMC

Premium (�) 0.62 -0.04 0.23 1.28
t-stat 4.08�� -0.15 2.18� p-val=0.18

Model B: Fama-French Factors and CMC

Premium (�) 0.57 0.03 -0.36 0.02 0.22 1.65
t-stat 2.55� 0.09 -1.08 0.07 2.07� p-val=0.04�

Model C: Fama-French Factors, WML, and CMC

Premium (�) 0.50 0.10 -0.39 0.11 0.64 0.21 1.34
t-stat 2.11� 0.29 -1.15 0.33 0.88 2.01� p-val=0.15

The table shows the results from Fama-MacBeth (1973) regression tests on 20 downside correlation
portfolios. These portfolios are formed in the following fashion. Stocks are first sorted into two groups
according to their past beta over the past year, using daily returns (high beta versus low beta). Each group
consists of one half of all firms. Then, within each beta group, we rank stocks based on their � �, also
computed using daily data over the past year into decile portfolios. This gives us 2 (�) � 10 (� �) portfolios,
making a total of twenty downside correlation portfolios. MKT is the CRSP value-weighted returns of all
stocks. SMB and HML are the size and the book-to-market factors (constructed by Fama and French (1993)),
WML is the return on the zero-cost strategy of going long past winners and shorting past losers (constructed
following Carhart (1997)). CMC is the return on a portfolio going long stocks with the highest past downside
correlations and shorting stocks with the lowest past downside correlations. T-statistics are computed using
Shanken (1992) adjusted standard errors. GRS denotes the F-test of Gibbons, Ross and Shanken (1989)
testing the hypothesis that the �’s of all 20 portfolios are jointly zero. T-statistics that are significant at the
5% (1%) level are denoted with * (**). The sample period is from January 1964 to December 1999.
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Table 8: Macroeconomic Variables and CMC

Panel A: CMCt = a+
P3

i=1 biMACROt�i +
P3

i=1 ciCMCt�i + �t

MACROt�1 MACROt�2 MACROt�3 Joint Sig
LEI coef –0.27 0.22 0.06 0.09

t-stat –2.27� 1.24 0.60
HELP coef –0.00 –0.04 0.05 0.24

t-stat –0.12 –1.26 1.97
IP coef –0.13 0.18 –0.02 0.16

t-stat –1.39 1.43 –0.22
CPI coef 0.17 –0.03 –0.18 0.64

t-stat 0.43 –0.05 –0.46
FED coef 0.22 –0.19 –0.02 0.48

t-stat 1.47 –0.83 –0.12
TERM coef 0.10 –0.39 0.26 0.64

t-stat 0.46 –1.11 1.10

Panel B:
MACROt = a+

P3

i=1 biCMCt�i +
P3

i=1 ciMACROt�i + �t

CMCt�1 CMCt�2 CMCt�3 Joint Sig
LEI coef –0.02 0.02 0.01 0.62

t-stat –1.04 0.73 0.31
HELP coef –0.48 0.03 0.18 0.00��

t-stat –5.34�� 0.42 1.77
CPI coef –0.01 0.00 –0.01 0.51

t-stat –0.84 –0.17 –1.14
IP coef –0.04 –0.06 0.00 0.03�

t-stat –1.77 –2.04� 0.03
FED coef 0.00 –0.03 –0.03 0.01��

t-stat 0.30 –1.37 –2.42�

TERM coef –0.02 0.02 –0.01 0.03�

t-stat –2.21� 1.42 –0.82

This table shows the results of the regressions between CMC and the macroeconomic variables. Panel A
lists the results from the regressions of CMC on lagged CMC and lagged macroeconomic variables, but
reports only the coefficients on lagged macro variables. Panel B lists the results from the regressions of
macrovariables on lagged CMC and lagged macroeconomic variables, but reports only the coefficients on
lagged CMC. LEI is the growth rate of the index of leading economic indicators, HELP is the growth rate in
the index of Help Wanted Advertising in Newspapers, IP is the growth rate of industrial production, CPI is the
growth rate of Consumer Price Index, FED is the federal discount rate and TERM is the yield spread between
10 year bond and 3 month T-bill. All growth rates (including inflation) are computed as the differences in
logs of the index at time t and time t � 12, where t is in months. FED is the federal funds rate and TERM
is the yield spread between the 10 year government bond yield and the 3-month T-bill yield. All variables
are expressed as percentages. T-statistics are computed using Newey-West heteroskedastic-robust standard
errors with 3 lags, and are listed below each estimate. Joint Sig in Panel A denotes to the p-value of the joint
significance test on the coefficients on lagged macro variables. Joint Sig in Panel B denotes the p-value of the
joint significance test on the coefficients of lagged CMC. T-statistics that are significant at the 5% (1%) level
are denoted with * (**). P-values of less than 5% (1%) are denoted with * (**). The sample period is from
January 1964 to December 1999.
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Table 9: Momentum, Downside Correlation and WML Returns

Panel A: Momentum Portfolio �’s from the Fama-French Model

K=3 K=6 K=9 K=12
1 L 10 W 1 L 10 W 1 L 10 W 1 L 10 W

Full Sample
� -0.54 0.44 -0.64 0.46 -0.67 0.47 -0.62 0.41

t-stat -2.74 2.61 -3.65 2.88 -4.47 3.12 -4.53 2.86

Conditioning on MKT < mean - 2SE
� -0.69 -1.36 -0.76 -1.32 -0.73 -1.16 -0.60 -1.35

t-stat -0.84 -1.52 -1.06 -1.66 -1.23 -1.64 -1.16 -2.41

Panel B: Decile �� Portfolio �’s from the Fama-French Model

Decile
1 2 3 4 5 6 7 8 9 10

Full Sample
� -0.37 -0.30 -0.31 -0.24 -0.19 -0.16 -0.15 -0.10 0.02 0.16
t-stat -3.35 -3.13 -3.56 -2.56 -2.35 -2.07 -2.12 -1.47 0.33 2.80

Conditioning on MKT < mean - 2SE
� 2.33 1.79 1.19 1.02 0.15 -0.03 0.89 0.63 0.12 -0.39
t-stat 2.10 1.84 0.98 0.74 0.14 -0.04 1.34 1.22 0.36 -0.73

Panel C: Regression of WML onto Various Factors

Constant MKT SMB HML CMC Adj R2

Model A: coef 0.72 0.05 0.68 0.12
t-stat 4.19�� 0.73 4.82��

Model B: coef 1.05 0.02 –0.41 –0.26 0.10
t-stat 6.25�� 0.33 –3.20�� –2.19�

Model C: coef 0.86 0.04 –0.19 –0.15 0.47 0.13
t-stat 4.87�� 0.55 –1.18 –1.27 2.81��

In Panels A and B, the table reports �’s from a Fama-French (1993) model for the 40 momentum portfolios
and the decile �� portfolios. The 40 momentum portfolios are formed using a J=6 month formation period,
with holding periods of K = 3, 6, 9 or 12 months, with 10 deciles within in each K. The decile � � portfolios
are the same portfolios in Table (2). Alpha’s from two samples are reported: over the full sample, and over
a sample conditioned on the market return (MKT) being below two standard deviations from its mean. The
full sample period is from January 1964 to December 1999. There are 41 observations where the market is
less than two standard deviations from its unconditional mean, where both the mean and standard deviation
are computed using the full sample. In Panel C, the table reports the time-series regression of the momentum
factor, WML, onto various other factors. MKT is the market, SMB and HML are Fama-French (1993)
factors, CMC is the downside risk factor, and SKS is the Harvey-Siddique (2000) skewness factor. The t-stat
is computed using Newey-West (1987) heteroskedastic-robust standard errors with 3 lags. In Panel C, t-
statistics that are significant at the 5% (1%) level are denoted with * (**). The sample period is from January
1964 to December 1999.
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Table 10: Fama-MacBeth Regression Tests of the Momentum Portfolios

Factor Premiums �

�0 MKT SMB HML CMC WML Joint Sig

Model A: Fama-French Model

Premium (�) –0.49 2.04 –0.50 –0.98 p-val=0.07
t-stat –0.45 1.66 –1.65 –2.17�

Model B: Using MKT and CMC

Premium (�) –0.66 1.98 0.73 p-val=0.03 �

t-stat –0.92 2.32� 2.38�

Model C: Fama-French Factors and CMC

Premium (�) –0.65 1.73 –0.11 –0.52 1.02 p-val=0.00 ��

t-stat –0.57 1.22 –0.25 –0.81 2.43�

Model D: Fama-French Factors, CMC and WML

Premium (�) –0.24 0.45 0.50 0.64 0.98 0.84 p-val=0.01 ��

t-stat –0.19 0.29 1.04 1.08 2.01� 2.74��

This table shows the results from the Fama-MacBeth (1973) regression tests on the 40 momentum portfolios
sorted by past 6 months returns. MKT, SMB and HML are Fama and French (1993)’s three factors and CMC
is the downside risk factor. WML is return on the zero-cost strategy going long past winners and shorting
past losers (constructed following Carhart (1997)). In the first stage we estimate the factor loadings over the
whole sample. The factor premia, �, are estimated in the second-stage cross-sectional regressions. The last
column of the table reports p-values from �2 tests on the joint significance of the betas of each model. All
statistics are computed using Shanken (1992) standard errors. T-statistics that are significant at the 5% (1%)
level are denoted with * (**). The sample period is from January 1964 to December 1999.
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Figure 1: Downside and Upside Moments of Industry Portfolios
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The left column of the figure shows upside and downside betas in Panel A, upside and downside correlations
in Panel C and the ratio of upside and downside total portfolio volatility to market volatility in Panel E.
All of these are averaged across the 48 Fama and French (1997) industry portfolios. The graph in Panel A
is constructed as follows (Panels C and E are similar). The figure displays the average ��(�) across the
portfolios, where � is x standard deviations below the unconditional mean of the market. For example, at
x = �1, the figure plots the average industry ��(� =MKT �SEMKT ), where MKT is the unconditional
mean of the excess market return and SEMKT is the unconditional volatility of the excess market return. At
x = 0, the figure plots the average ��(� = MKT ). Similarly, on the RHS of the x-axis for x � 0, the
figure displays the average �+(�), for � representing x standard deviations above the mean of the market.
There are two points plotted at x = 0 representing the average ��(� = MKT ) � �� and the average
�+(� = MKT ) � �+. The 95% standard error bounds shown in dotted lines in Panels A, C, and E are
produced by bootstrap with 10,000 simulations. Panels B, D and F, in the right column of the figure, report
the ratio of ��=�+, (Panel B), the ratio of ��=�+ (Panel D) and the ratio of k�=k+ (Panel E) for each of the
48 industry portfolios (numbered 1-48 on the x-axis). All of these ratios are computed at the conditioning
level of � =MKT . Data is sampled monthly from Jan 1964 - Dec 1999.
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Figure 2: Alphas and Factor Loadings of the Downside Correlation Portfolios
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The top panel shows portfolio alphas from the 20 �� portfolios. These portfolios are formed in the following
fashion. First, stocks are sorted into two groups according to their past beta over the past year, using daily
returns (high beta versus low beta). Each group consists of one half of all firms. Then, within each beta group,
we rank stocks based on their ��, also computed using daily data over the past year into decile portfolios.
This gives us 2 (�) � 10 (��) portfolios, making a total of twenty downside correlation portfolios. The
portfolios 1-10 (11-20) are from the low (high) beta group. The �’s are from a model of the Fama-French
(1993) factors, augmented with Carhart (1997)’s WML momentum factor and are shown over three periods:
over the full sample, from Jan 1964 - Dec 1981, and from Jan 1982 - Dec 1999. The bottom panel shows the
portfolio factor loadings on the MKT, SMB, HML and WML factors over the full sample.
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Figure 3: Average Return, �, �� of Momentum Portfolios
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These plots show the average monthly percentage returns, � and �� of the Jegadeesh and Titman (1993)
momentum portfolios. J refers to formation period and K refers to holding periods. For each month, we
sort all NYSE and AMEX stocks into decile portfolios based on their returns over the past J=6 months. We
consider holding periods over the next 3, 6, 9 and 12 months. This procedure yields 4 strategies and 40
portfolios in total. The sample period is from January 1964 to December 1999.
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Figure 4: Loadings of Momentum Portfolios on Factors
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These plots show the loadings of the Jegadeesh and Titman (1993) momentum portfolios on MKT, SMB,
HML and CMC. Factor loadings are estimated in the first step of the Fama-MacBeth (1973) procedure
(equation (B-2)). J refers to formation period and K refers to holding periods. For each month, we sort all
NYSE and AMEX stocks into decile portfolios based on their returns over the past J=6 months. We consider
holding periods over the next 3, 6, 9 and 12 months. This procedure yields 4 strategies and 40 portfolios in
total. MKT, SMB and HML are Fama and French (1993)’s three factors and CMC is the downside correlation
risk factor. The sample period is from January 1964 to December 1999.
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Figure 5: Pricing Errors of GMM Estimation (HJ method)

10 20 30 40

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

CAPM

Pr
ici

ng
 E

rro
r

Portfolio
10 20 30 40

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Fama−French Model

Pr
ici

ng
 E

rro
r

Portfolio

10 20 30 40

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Market and CMC

Pr
ici

ng
 E

rro
r

Portfolio
10 20 30 40

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Fama−French Model and CMC

Pr
ici

ng
 E

rro
r

Portfolio

10 20 30 40

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Carhart Four Factor Model

Pr
ici

ng
 E

rro
r

Portfolio
10 20 30 40

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Carhart Model and CMC

Pr
ici

ng
 E

rro
r

Portfolio

These plots show the pricing errors of various models considered in Section 5.2. Each star in the graph
represents one of the 40 momentum portfolios with J = 6 or the risk-free asset. The first ten portfolios
correspond to the K = 3 month holding period, the second ten to the K = 6 month holding period, the third
ten to the K = 9 month holding period, and finally the fourth ten to the K = 12 holding period. The 41st
asset is the risk-free asset. The graphs show the average pricing errors with asterixes, with two standard error
bands in solid lines. The units on the y-axis are in percentage terms. Pricing errors are estimated following
computation of the Hansen-Jagannathan (1997) distance. The Carhart (1997) four-factor model consists of
MKT, SMB, HML and WML factors.
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