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Abstract

If investors are more averse to the risk of losses on the downside than of gains on the upside,
investors ought to demand greater compensation for holding stocks with greater downside risk.
Downside correlations better capture the asymmetric nature of risk than downside betas, since
conditional betas exhibit little asymmetry across falling and rising markets. We find that stocks
with high downside correlations with the market, which are correlations over periods when
excess market returns are below the mean, have high expected returns. Controlling for the
market beta, the size effect, and the book-to-market effect, the expected return on a portfolio
of stocks with the greatest downside correlations exceeds the expected return on a portfolio
of stocks with the least downside correlations by 6.55% per annum. We find that part of the
profitability of investing in momentum strategies can be explained as compensation for bearing
high exposure to downside risk.



1 Introduction

According to the Capital Asset Pricing Model (CAPM), a stock’s expected excess return is
proportional to its market beta, which is constant across down-markets and up-markets. While
this model has been rejected, modern factor models, like the Fama and French (1993) three-
factor model, continue to maintain the symmetric nature of factor loadings across down-markets
and up-markets. However, asearly as Markowitz (1959), economists have realized that investors
care differently about downside risk, than they care about total market risk. Markowitz advises
constructing portfolios based on semi-variances, rather than on variances, since semi-variances
weight upside risk (gains) differently from downsiderisk (losses). More recently, in Kahneman
and Tversky (1979)’s loss aversion utility and in Gul (1991)’s first-order risk aversion utility,
losses are weighted more heavily than gainsin an investor’s utility function. If investorsdislike
downside risk, they ought to demand higher compensations — in the form of higher expected
returns — for holding assets with greater downside risk.

One natural extension of the CAPM, that takes into account this asymmetric treatment of
risk, is the use of downside and upside betas (Bawa and Lindenberg, 1977). These downside
betas are the market betas computed over periods for which the market return is below its mean
(downside periods). However, downside betas produce little variations in the cross-section of
expected returnsin the data, since they are affected by the changesin idiosyncratic volatility and
in market volatility across downside and upside periods. In particular, many authors, including
Campbell et al. (2001), find that market volatility increases in down-markets and recessions.
Moreover, Duffee (1995) finds that idiosyncratic volatility decreases in down-markets. Both of
these effects cause conditional betato havelittle asymmetry acrossthe downside and the upside.
In contrast, conditional correlations are immune from different volatility effects across up-
markets and down-markets, and exhibit significant asymmetries across downside versus upside
moves by the market (Ang and Chen, 2001). This suggests that conditional correlations may be
better able to capture the asymmetric nature of risk than conditional betas.

We find that stocks with high downside correlations, which we measure as highly correlated
movements with the aggregate market in periods when markets fall, provide high expected
returns. The portfolio of greatest downside correlation stocks outperforms the portfolio of
lowest downside correlation stocks by 4.91% per annum. We show that downside correlations
are not linked to low liquidity in down markets nor mechanically linked to past returns. After
controlling for the market beta, the size effect, and the book-to-market effect, the greatest
downside correlation portfolio outperforms the lowest downside correlation portfolio by 6.55%
per annum.



Our research design follows the custom of constructing and adding factors to explain
deviationsfrom the Capital Asset Pricing Model (CAPM).* While this approach does not speak
to the nature of the risk premia, our goal is not to present a theoretical model that explains
how downside risk is priced in equilibrium. Our goal is to demonstrate that a part of the
factor structure in stock returns reflects variations in downside risk, measured by downside
correlations. Not surprisingly, we find that while the Fama-French (1993) three-factor model
cannot explain the variations in expected returns of stocks sorted by downside correlations,
a factor reflecting the spread in expected returns induced by downside correlations explains
these variations. We term this factor ‘CMC’, and find that it also helps to forecast economic
downturns.

As an application of the CMC factor, we link the profitability of the Jegadeesh and Titman
(1993) momentum strategies to downside risk. Existing explanations of the momentum effect
are largely behaviora in nature and use models with imperfect formation and updating of
investors expectations in response to new information (Barberis, Shleifer and Vishny, 1998;
Daniel, Hirshleifer and Subrahmanyam, 1998; Hong and Stein, 1999). These explanationsrely
on the assumption that arbitrage is limited, so that arbitrageurs cannot eliminate the apparent
profitability of momentum strategies. Mispricing may persist because arbitrageurs need to bear
some undiversifiablerisk, and risk-averse arbitrageurs demand compensation for accepting such
risk (Hirshleifer, 2001). We argue that these momentum strategies have high exposures to
a systematic downside correlation factor. The intuition behind this story is that past winner
stocks have high returns, in part, because during periods when the market experiences downside
moves, winner stocks move down more with the market than past loser stocks.

The momentum portfolios load positively and significantly on the downside correlation
factor. In particular, a linear two-factor model with the market and the CMC factor explains
some of the cross-sectional variations among momentum portfolio returns. The downside
correlation factor commands a significantly positive risk premium in cross-sectional tests, and
retains its statistical significance in the presence of the Fama-French and momentum factors.
However, the downside correlation factor only modestly reduces the Carhart (1997) WML
momentum factor premium by 2.18% per annum, and hypothesis tests reject that this factor
can fully account for the momentum effect.

1 Other authors use factors which reflect the size and the book-to-market effects (Fama and French, 1993 and
1996), macroeconomic factors (Chen, Roll and Ross, 1986), production factors (Cochrane, 1996), labor income
(Jagannathan and Wang, 1996), market microstructure factors like volume (Gervais, Kaniel and Mingelgrin, 2001)
or liquidity (Pastor and Stambaugh, 2001), and factors motivated from corporate finance theory (Lamont, Polk and
Saé-Requejo, 2001).



Our findings are closely related to other studies which use factor models to account for
the high momentum returns. Harvey and Siddique (2000) demonstrate that skewness is
priced, and show that momentum strategies are negatively skewed. Unlike skewness or other
centered moments, our conditional correlation measure emphasizes the asymmetry of risk
across downside and upside market moves. Our findings are also related to DeBondt and Thaler
(1987) who find that past winner stocks have greater downside betas than upside betas. We find
that the spreads in expected returns from downside beta are very weak since conditional betas
are roughly constant across upside and downside periods. In contrast, downside correlation
portfolios produce large cross-sectional variations in expected returns.

The rest of this paper is organized as follows. Section 2 investigates the relation between
higher-order moments and expected returns. We show that portfolios sorted by increasing
downside correlations have increasing expected returns. On the other hand, portfolios sorted by
other higher moments do not produce any discernable pattern in their expected returns. Section
3 exploresif the patterns across portfolios of downside correlations are robust after controlling
for some known effects. Section 4 details the construction of our downside correlation factor
and showsthat it commands an economically significant risk premium. We apply the downside
correlation factor to price the momentum portfolios in Section 5. Section 6 concludes.

2 Higher-Order Moments and Expected Returns

We start with the relations between centered moments and expected returns in Section 2.1.
Since this framework fails to produce significant spreads in expected returns, we turn our
attention to downside and upside betas advocated by Bawa and Lindenberg (1977) in Section
2.2. High downside beta stocks have only dlightly higher expected returns than low downside
beta stocks. Section 2.3 examinesthe cause of thisfailure, and showsthat the effect of changing
idiosyncratic and market volatilities across downside and upside periods, masks the asymmetry
of conditional betas across the downside and the upside. On the other hand, downside
correlationisnot affected by changing volatility effects, and exhibits highly asymmetric patterns
across the downside and upside periods. Portfolio sorts based on downside correlations produce
large spreads in expected returns, which we demonstrate in Section 2.4.

2.1 Centered versus Conditional Moments

Economic theory predicts that the expected return of an asset islinked to higher-order moments
of the asset’ sreturn through the preferences of amarginal investor. The standard Euler equation



in an arbitrage-free economy is:

Et[mt+17“z',t+1] =0, (1)

where m,, isthe pricing kernel or the stochastic discount factor and r; ;. isthe excess return
on asset 7. If we assume that consumption and wealth are equivalent, then the pricing kernel
is the margina rate of substitution for the marginal investor: my,; = U (Wy41)/U'(W;). By
taking a Taylor expansion of the marginal investor’s utility function, U, we can write:

WtU” W2Ull/
G MK+ ;—U,MKT,E+1 + ..., 2
where M KT, isthe rate of return on the market portfolio, in excess of the risk-free rate.
The coefficient on M KT, in equation (2), W,U"/U’, corresponds to the relative risk

aversion of the margina investor. The coefficient on M KT?, is studied by Kraus and

miy1 = 1+

Litzenberger (1976) and motivates Harvey and Siddique (2000)’s coskewness measure, where
risk-averseinvestorsprefer positively skewed assetsto negatively skewed assets. Dittmar (2001)
examines the cokurtosis coefficient on M K72, and argues that investors with decreasing
absolute prudence dislike cokurtosis.

If the systematic component of skewness or kurtosis are priced, then stocks sorted by
coskewness or cokurtosis should exhibit cross-sectional spreads in expected returns. When
stocks are sorted into decile portfolios by increasing past coskewness, we do find that stocks
with more negative coskewness have higher returns. However, the difference between the
portfolio of stocks with the most negative coskewness and the portfolio of stocks with the most
positive coskewness is only 1.79% per annum, which is not statistically significant at the 5%
level (t-stat = 1.17). When we sort on cokurtosis, high cokurtosis stocks have dlightly lower
expected returns than low cokurtosis stocks, which is opposite of that predicted by theory.

Why might centered moments like coskewness and cokurtosis fail to pick up much pattern
in the cross-section of stock returns? If the marginal investor’s utility is kinked, skewness and
other centered moments may not effectively capture the asymmetry in aversion to risk across
upside and downside moves. Empirical testsreject standard specificationsfor U, such as power
utility, and leave unanswered what the most appropriate representation for U is. However,
economic theory does not restrict the utility function U to be smooth. For instance, Kahneman
and Tversky (1979)’'s loss aversion utility function and Gul (1991)’s first-order risk aversion
utility function have a kink at the reference point to which an investor compares gains and
losses. These asymmetric, kinked utility functions suggest that polynomial expansions of U,
such as the expansion used by Bansal, Hsieh and Viswanathan (1993), may not be a good
global approximations of U. In particular, standard polynomial expansions may not capture
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risk which differs across down or up markets. In an effort to capture the asymmetric nature of
risk, we turn to moments conditioned on downside and upside moves of the market.

2.2 Downside and Upside Betas

A natural starting point for examining asymmetriesin risk isto consider downside and upside
betas. Following Bawa and Lindenberg (1977), we define downside beta 5~ and upside beta
[T as

. COV('I"iyt, MKTAMKE < 9)
 va(MKT,|MKT, < 0)

d p*0) = .

and - 370) = — S MR, MKT, > 0)

p(0)

3)

where r; ; isthe excess stock return and M K'T; isthe excess market return. The parameter 6 is
a conditioning level. Hence, 3~ (#) is the beta among observations where the market return is
less than 6, and 57 (0) is the beta anong observations where the market return is greater than

0. Inthe casewhere ) = M KT, where M KT isthe mean excess market return, we abbreviate
the notationto 5~ (6 = MKT) = 3~ and (0 = MKT) = (3+.

Downside and upside betas capture the notion of asymmetric exposures to risk across
periods when the market falls and periods when the market rises. These moments are different
from centered moments because they emphasize the asymmetry across upside market moves
and downside market moves explicitly by the conditioning level . Computing 5~ (6) and 37 (9)
issimple: we take those observations which satisfy the conditioning requirement based on ¢,
and then compute the betas on this subsample of observations. If the agents in the economy are
more sensitive to losses than they are to gains, then stocks with greater downside risk should
provide greater compensation.

To examine if downside or upside betas are related to expected returns, we sort stocks based
on their downside betas and on their upside betas to form portfolios based on these sorts. Since
we have fewer observations available to us as & moves further away from the mean, we focus
on the conditioning level of § = MKT, so that roughly half of the observations are used
to compute 3~ and 3+ for each stock. We rank stocks into deciles, and calculate the value-
weighted holding period return of the portfolio of stocks in each decile over the following
month. We rebalance these portfolios each month. Appendix A provides further detail on
portfolio construction.

Table (1) presents the characteristics of portfolios formed by the sorts of stocks on their
downside betas and on their upside betas, as well as on their unconditional betas. Panel A of



Table (1) showsthe summary statistics of stocks sorted by the unconditional betas. The column
labeled‘ 3’ showsthe unconditional betas of each portfolios calculated at the monthly frequency
over the whole sample. This column shows that the portfolios constructed by ranking stocks
on past unconditional betas retain their beta-rankings in the post-formation period. However,
confirming many previous studies, Panel A showsthat thereis no pattern in the expected returns
of the beta-sorted portfolios.

Panel B of Table (1) reports the summary statistics of stocks sorted by downside beta, 5.
The columns labeled ‘5" and ‘3~ list the post-formation unconditional betas and downside
betas, respectively. Portfolios with higher past downside beta have higher unconditional betas.
Sorting on past 5~ aso produces large ex-post formation spreads in downside beta, that is,
downside beta is also persistent. There is a weakly increasing, but mostly humped-shaped
pattern in the mean returns of the 5~ portfolios. However, the difference in the returns is not
statistically significant. In Panel C, stockssorted on past 5+ exhibit no spread in average returns.
Hence, while there appears to be a weak spread in the expected returns across downside betas,
upside beta does not seem to be priced.

2.3 TheFailureof Conditional Beta M easures

In this section, we investigate why the conditional beta measures fail to produce a significant
relation between downside betas and expected returns. One reason why the effect of downside
betaisweak isthat thereislittle difference across downside and upside betas in the data, so the
downside beta picks up very little asymmetry in risk.

Panel A of Figure (1) shows the average downside and upside beta for various conditioning
levels on the z-axis across the 48 Fama-French (1997) industry portfolios at the monthly
frequency. On the LHS of the z-axis for z < 0, the figure displays the average 5~ (6) across
al 48 industry portfolios, where 6 is x standard deviations below the unconditional mean of
the market. For example, at = = —1, the figure plots 5~ (¢ = MKT — SEykr), Where
M KT isthe unconditional mean of the excess market return and S E ;57 is the unconditiona
volatility of the excess market return. At x = 0, the figure plots 3= (0 = MKT). Similarly,
on the RHS of the z-axis for > 0, the figure displays 57 (), for 6 representing = standard
deviations above the mean of the market. There are two points plotted at = = 0 representing
B (0=MKT) =3 and*(§ = MKT) = 3*. To construct the average industry 3~ (), we
first select the sample of observations which satisfies the conditioning requirement based on 6.
Then, the individual 3~(6) for each industry is computed for each sample. The figure graphs
the average 5~ (6) across the industries for each 6. The procedure is repeated for the average



(7 (8) across the 48 industries.

In Panel A of Figure (1), the average 5~ across the 48 industries is only dlightly higher
(4.8%) than the average 3™ at # = MKT (zr = 0). As we condition on more extreme
market moves (as ) becomes larger in absolute value), the plot shows little difference between
() and 51 (0). When we examine the differences between 5~ and 5+ for the industries
individually, we see the reason why. Panel B showstheratio of 5~ to 51 across each of the 48
industriesat § = M KT. The downside beta is greater than the upside beta for only 25 out of
the 48 industries. In summary, there is little asymmetry in conditional betas across upside and
downside movements of the market.

To further investigate the failure of the conditional betas, we decompose the downside and
upside betas into a conditional correlation term and a ratio of conditional total volatility to
conditional market volatility:

cov(ryy, MKT,|MKT, <0 _ _
g6) = v;r(;\IKE|](/|[KTt - 0) L0 k70

o COV(riy, MKT|\MKT, >0) n
and B*(0) = Va(METMET, ) " (0) x k7(0), (4)

where downside and upside correlation (p~ (#) and p*(6), respectively) are given by:

p (0) =corr(ri, MKT;|MKT; < 0)
and p*(0) =corr(ri;, MKT,|MKT, > 0), (5)

and £~ () and k™ (0) are ratios of conditional volatilities:

ki( ) . O'(Ti,t|MKTt < 0)
~ o(MKT,|MKT,; < 6)
O'(Ti,t|MKTt > 0)

and  K0) = T AT, > 6) ©)

As with the notation for downside and upside beta, when § = M KT, we abbreviateto p~ (0 =
MKT)=p~,p*(0=MKT)=p*, k(0= MKT) =k~ ,and k* (0 = MKT) = k™.

The asymmetry in conditional correlations is much stronger than the asymmetry in betas
across market downside and upside movements. Panel C of Figure (1) looks at the effects of
downside and upside correlations across various . There is a marked asymmetry across the
average downside and upside correlations for the 48 industry portfolios, with a sharp break at
§ = MKT (z = 0). Ang and Chen (2001) show that if returns are drawn from a normal
distribution, as # becomes larger in absolute magnitude, the downside and upside correlations
must be symmetric and tend to zero. While upside conditional correlations decrease as
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increases, downside correlations do not decrease as 6 decreases. Panel D of Figure (1) shows
that a @ = M KT, the point estimates of the downside correlations, p—, are higher than the
upside correlations, p*, for every industry portfolio.

The second term in equation (4) is the reason why there is an asymmetry in conditional
correlations but not in conditional betas. The terms, £~ (#) and £ (0), are the ratios of total
asset volatility to market volatility, conditional on downside and upside market moves. We
plot these volatility ratios in Panel E of Figure (1). Downside volatility ratios are much lower
than volatility ratios on the upside. The corresponding Panel F showstheratio £~ /& for each
industry. In all but one of 48 industries, the downside volatility ratio is higher than the upside
volatility ratio.

There are two effectsthat explain why on average k= (6) < k™ (0). First, the denominator of
k= () and k™ () in equation (6) is market volatility. Market volatility isasymmetric and higher
after negative shocks to expected returns. Hence, conditional on the downside, the denominator
of equation (6) is larger for £~ than for k™. Second, Duffee (1995) finds that cross-sectional
dispersionisasymmetric and idiosyncratic volatility decreases when the stock market falls. This
makes the ratio of total volatility to market volatility larger for k™ than for £~. Both of these
effects contribute to downside k£~ (6) being lower than £ () on average, as Panels E and F of
Figure (1) demonstrate.

The decrease of k£~ (#) on the downside relative to £ (#) on the upside counter-acts the
increase of p~(#) on the downsiderelativeto p™ () on the upside. Multiplying the pointsin the
conditional correlation line in Panel C together with the corresponding point in the conditional
volatility ratio line in Panel E produces a relatively flat effect for the conditional betas in
Panel A. Hence, the conditional betais relatively flat across downside and upside movements
because the increase in correlations on the downside is muted by the decrease in conditional
idiosyncratic volatility and by the increase in market volatility.

2.4 Downside Correlations and Expected Returns

While the cross-sectional spreads of expected returns of stocks sorted on downside and upside
betas are small, we now demonstrate that sorting on the correlation component of the beta
produces a large spread in expected returns, in particular for downside correlations. The
conditional correlations are asymmetric over downside and upside movements, as opposed to
therelatively low asymmetry in conditional betas across the downside and upside. Conditional
correlations are unaffected by different idiosyncratic and market volatility across upside and
downside moves, whereas these effects cause conditional beta to have little downside versus



upside asymmetry. Sorting on the other component of beta, the ratio of total to market volatility,
produces no pattern in expected returns. Hence, conditional correlations may be better able to
capture asymmetriesin risk than conditional betas.

Table (2) lists monthly summary statistics of the portfolios sorted by p~ and p*. We choose
the same conditioning level, § = M KT, asthe sortsfor the conditional betasin Table (1). Panel
A of Table (2) contains the results for stocks sorted on past p—. The first column lists the mean
monthly holding period returns of each decile portfolio. Stocks with the highest past downside
correlations have the highest returns. Going from the portfolio of lowest downside correlations
(portfolio 1), to the portfolio of highest downside correlations (portfolio 10), the average return
almost monotonically increases. The return differential between the portfolios of the highest
decile p~ stocks and the lowest decile p— stocksis 4.91% per annum (0.40% per month). This
difference is statistically significant at the 5% level (t-stat = 2.26), using Newey-West (1987)
standard errors with 3 lags.

The portfolio of stocks with the highest past downside correlations have the highest betas.
Since the CAPM predicts that high beta assets have high expected returns, we investigate in
Section 3 if the high returns of these portfolios are explained by the market betas. However,
the high returns on these portfolios do not appear to be attributable to the size effect or the
book-to-market effect. The columns labeled “Size” and “B/M” show that high p— stocks tend
to be large stocks and growth stocks. Size and book-to-market effects would predict high p—
stocks to have low returns rather than high returns. The p~ portfolios are also flat in leverage,
so leverage a so cannot be driving the pattern in expected returns.

We also control for the size and book-to-market effect using the Fama-French (1993) three-
factor model. We take the time-series alphas from aregression of ap~ decile's excess portfolio
returns onto MKT, SMB and HML factors:

Tit:CLZ'—|—biMKTt+SZ’SMBt+hiHMLt+€it. (7)

These alphas are reported in the column labeled ‘FF o’ of Table (2), and they maintain their
nearly monotonic rankings. The difference in the Fama-French a phas between the decile 10
portfolio and the decile 1 portfolio is 0.53% per month, or 6.55% per annum with a p-value
0.00. Hence, the variation in downside risk in the p~ portfolios is not explained by the Fama-
French model. In fact, controlling for the market, the size factor and the book-to-market factor
increases the differences in the returns from 4.91% to 6.55% per annum.

The second to the last column calculates the post-formation conditional downside correla-
tion of each decile portfolio. These post-formation period p~ are monotonically increasing,
which indicates that the top decile portfolio, formed by taking stocks with the highest
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conditional downside correlation over the past year at the daily frequency, is the portfolio with
the highest downside correlation over the whole sample at the monthly frequency. Thisimplies
that using past p— isagood predictor of future p~ and that downside correlations are persistent.

The last column lists the downside betas, 5, of each decile portfolio. The 5~ column
showsthat the p~ portfolios have afairly flat 5~ pattern. Hence, the spread in expected returns
of the p— portfolios is not due to 5~. We contrast this with the ex-post formation p~ of the
B~ portfoliosin Panel B of Table (1). The 3~ portfolios have a slightly humped shape pattern
(increasing and then decreasing) of expected returns. The p~ statisticsof the 5~ portfolios have
the same humped shape pattern.

Panel B of Table (2) shows the summary statistics of stocks sorted by p*. In contrast to
the stocks sorted by p—, there is no discernable pattern between the mean returns and upside
correlations. However, the patternsin the 5’s, market capitalizations, and book-to-market ratios
of stocks sorted by p* are similar to the patterns found in p~ sorts. In particular, high p*
stocks also tend to have higher betas, tend to be large stocks, and tend to be growth stocks. The
last two columns list the post-formation p* and g+ statistics. Here, both p™ and 5 increase
monotonically from decile 1 to 10, but portfolio sorts by p* do not produce any patternin their
expected returns.

In summary, Table (2) shows that assets with higher downside correlations have higher
returns. The difference between thefirst and tenth decile of raw returnsis 4.91% per annum, but
this increases to 6.55% per annum controlling for the Fama-French (1993) factors. Downside
beta does not pick up this spread in expected returns because it exhibitslittle asymmetry across
downside and upside movements. In contrast to the strong relationship between expected
returns and downsi de moments, expected returns do not seem to be related to upside conditional
moments (3 or p™).

3 Pricingthe Downside Correlation Portfolios

In this section we conduct a battery of tests to try to price the downside correlation effect.
Section 3.1 examinesif the expected returns on downside correl ation portfolios can be explained
by the market beta. Section 3.2 examinesif these portfolio returns can be explained by the size
effect, the book-to-market effect, or the momentum effect. Section 3.3 asksif the high downside
correlation expected returns are robust across various subsamples. We show that downside
correlation is not mechanically linked to past returns nor related to periods of low liquidity in
Sections 3.4 and 3.5, respectively. Section 3.6 interprets our findings.
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3.1 Can Market Risk Price Downside Correlation?

In Table (2), the downside correlation portfolios display increasing betas with increasing p—.
This raises the concern that the expected returns on the downside correlation portfolios can be
explained by the market beta. To allay such concerns, we work with twenty portfolios formed
in the following manner. Stocks are first sorted into two groups (high beta versus low beta)
according to their past betas over the past year at the daily frequency. Each group consists
of one half of al firms. Then, within each beta group, we rank stocks based on their p—, aso
computed using daily dataover the past year into decile portfolios. Thisgivesus2 (3) x 10(p )
portfolios. When we average across the beta portfolios for each p~ decile, we find the spread
in p~ controlling for the beta effect in ten decile portfolios. These decile beta-controlled p~
portfolios have near-flat uniform ex-post formation betas, which indicates that the double-sort
issuccessful at controlling for beta.

The difference between the tenth and the first decile beta-controlled p~ portfoliosis 0.56%
per month, or 6.95% per annum, with a p-value of 0.00. A Gibbons, Ross and Shanken (1989)
(GRS) F-test to jointly test if the portfolio alphas are zero rejects with a p-value of 0.00. We
also consider Carhart (1997) four-factor model, which consists of the Fama-French factors plus
amomentum factor, WML.:

Ty = Q; + szKTt + SZ'SMBt + hZHMLt + ’UJZ'WMLt + €t (8)

Similar to the Fama-French time-series regressions, the aphas are till significant, with a
difference of 0.44% per month, or 5.40% per annum, between the tenth and the first decile
portfolios. A GRS test also reects with a p-value of 0.00. Since the effect of downside
correlation remains after controlling for the market beta, we conclude that downside correlation
cannot be explained by market risk.

3.2 Can Other Risk FactorsPrice Downside Correlation?

While we can control for the effect of market beta by forming additional double-sort portfolios,
this strategy quickly becomes difficult to implement if we try to control for the effects of
multiple factors. In this section, we run Fama-MacBeth (1973) cross-sectional tests (described
inthe Appendix) to test if multiplerisk factors can price the spread in expected returns produced
by downside correlation. In particular, we focus on the standard Fama-French (1993) model,
and augment this with the Carhart (1997) WML momentum factor.

To run these tests, we work with the 20 p— portfolios described in the previous section to
control for the beta effect. Table (3) reports the Fama-MacBeth cross-sectional estimates of the
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Fama-French (1993) factor premiums:
E(rit) = Mo + Amkrbi + AsvpSi + Aaarnhi, 9
where )\; isthe premium of factor ;. We also report the Carhart (1997) model factor premiums:
E(ri) = Mo + Avrrbi + Asvrssi + Agavphi + Awarpw;. (10)

In both cases, the factor premiums are all statistically insignificant and the size premium is
estimated to be negative. These results are driven by the inability of these standard factors to
price the p~— portfolios. We reject that the portfolio alphas are jointly zero using a GRS test.

In Figure (2), we plot the alphas and factor loadings from the Carhart four-factor model.
Figure (2) ordersthe 20 portfolios so that portfolios 1-10 correspond to the low beta group, and
portfolios 11-20 correspond to the high beta group. The portfolio aphasin the top panel reflect
the spread in expected returns moving from low p~ to high p~, but are much more pronounced
in the high beta group. The factor loadings for MKT in the bottom panel reflect the low-high
beta sorting, and are largely flat within each beta group. The factor loadings for SMB go the
wrong way, so that high p— firmswith high returns have small SMB loadings. The HML factor
also does not account for the p— effect, since the HML factor loadingsincrease in the high beta
group and are flat across the low beta group. Finaly, the WML factor loadings are largely flat
and very small.

3.3 Isthe Downside Correlation Effect Stable Across Subsamples?

A simple robustness exercise is to check if the spread in the p~ correlation portfolios remains
statistically significant in various subsamples. The top panel of Figure (2) also plots the alphas
from the four-factor model from the full sample (Jan 1964 to Dec 1999), from Jan 1964 to
Dec 1981 and from Jan 1982 to Dec 1999. The a phas have ailmost the same increasing pattern
in each subsample. Hence, the same qualitative relationship between p~ and expected returns
holdsin different subperiods.

To conduct a more formal test for stability over different subsamples, we compute the
difference between the alphas of the tenth and the first decile beta-controlled p— portfolios,
which are reported in Table (4). The difference in the aphas between portfolio 10 and 1 are
statistically significant at the 1% level for both the three-factor and the four-factor models across
the whole sample period. For the Fama-French model alphas in the first column, the alphas are
still large and statistically significant when the ssmpleis split into two separate calendar periods,
and remain significant when the sampleis split into NBER expansions and recessions.
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In the last two columns of Table (4) we report the a phas from the four-factor model. These
alphas are dightly smaller than the alphas from the Fama-French model and are aso highly
significant across NBER expansions and recessions. However, when the sample is split into
two calendar periods, the difference in the alphas is near-significant (p-value = 0.06) over Jan
1964 - Dec 1981, but is highly statistically significant over the second period (Jan 1982 - Dec
1999). Nevertheless, the aphasare still of alarge magnitude across various subsamples. A more
serious concern is that since the alphas including the WML factor are smaller than the alphas
from the Fama-French model, this raises the question that a large part of the high expected
returnsinduced by high downside correlations may be due to momentum.

3.4 IsDownside Correlation Capturing Past Returns?

There are severa similiarities between the Jegadeesh-Titman (1993) momentum effect and
downside risk, which raises the concern that downside correlation is merely a noisy measure
of past returns. First, like momentum, the downside correlation alphas are exacerbated by size
and value effects (Fama and French, 1996; Grundy and Martin, 2001). Second, controlling
for momentum in the time-series regressions reduces the alphas of the downside correlation
portfolios. We show in this section that downside correlations are not mechanically linked to
past returns, hence the momentum effect.

To disentangle the effects of past returns and downside correlations, we perform a double
5 x 5 sort across past 6 months returns and downside correlations. At each month, we first sort
al stocks into quintiles based on their past 6 month returns. Then to control for past returns,
we sort stocks within each past return quintiles into additional quintiles based on p~. This
procedure creates 25 portfolios, and we take the averages of the p— portfolios across past return
quintiles.

We report the alphas from the Fama-French three-factor model of these five portfolios in
Panel A of Table (5). Controlling for past returns, these averages of downside correlation
portfolios show cross-sectional dispersion in p~. Their alphas are statistically significant,
and the difference between the first and fifth portfolio aphas is 0.33% per month, which is
also significant with a p-value = 0.00. In Table (4), controlling for momentum over the first
subsample period (Jan 1964 - Dec 1981) yielded only aborderline significant result. Now, when
we control for the momentum effect by the double portfolio sort, we find that the difference in
the alphas becomes highly significant (t-stat = 2.50) over thisfirst subsample period (Jan 1964 -
Dec 1981). Hence, after controlling for momentum, high downside correlation stocks still have
high returns.
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3.5 IsDownside Correlation Liquidity?

A number of studies find that liquidity of the market dries up during down markets. Pastor
and Stambaugh (2001) construct an aggregate liquidity measure which uses signed order flow,
and find that their liquidity measure spikes downwards during periods of extreme downward
moves, such as during the October 1987 crash, and during the OPEC oil crisis. Jones
(2001) also find that the bid-ask spreads increase with market downturns, while Chordia, Roll
and Subrahmanyam (2000) find a positive association at a daily frequency between market-
wide liquidity and market returns. These down markets, which seem to be correlated with
systematically low liquidity, are precisely the periods which downside risk-averse investors
didlike.

To study the relation between downside risk and liquidity, we follow Pastor and Stambaugh
(2001) and reconstruct their aggregate liquidity measure, L, detailed in Appendix A. After
constructing the liquidity measure, we assign a historical liquidity beta, 3%, at each month, for
each stock listed on NY SE, AMEX and NASDARQ. This is done using monthly data over the
previous 5 years from the following regression:

ri=a; + B*L, + by MKT, + s,SMB; + h;HM L, + €, (11)

where L, isthe aggregate liquidity measure.

Since each stock 7 in our sample has a downside correlation (p; ;) and aliquidity beta (ﬂf,t
for each month, we can examine the unconditional relations between the two measures. First,
we compute the cross-sectional correlation between p; , and Z.L,t at each timet, and then average
over time to obtain the average cross-sectional correlation between downside risk and liquidity.
The average cross-sectional correlationis—0.0108, whichiscloseto zero. We obtain the average
time-series correlation between p;, and @L,t by computing the correlation between these two
variables for each firm across time, and then averaging across firms. The average time-series
correlationis-0.0029, which isaso almost zero. Hence, our measure of downsiderisk isalmost
orthogonal to Péastor and Stambaugh’s measure of aggregate liquidity risk.

To further investigate the relation between downside risk and aggregate liquidity, we
perform a 5 x 5 double sort based on liquidity and p~. At each month, we independently
sort stocks into two quintile groups based on 3* and p~—. The intersection of these two quintile
groups forms 25 portfolios sorted by 3% and p~. We take the average of the p~ portfolios across
B% quintiles, and report the intercept coefficients from a Fama-French (1993) factor time-series
regression of these average portfoliosin Panel B of Table (5).

We observe asimilar patternin the average returnsmoving fromlow p— tohigh p— portfolios
asin Table (2). There is negative mispricing in the low p~ portfolios and positive mispricing
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in the high p~ portfolio. The difference between a; and a; is 0.26% per month, which is
statistically significant at the 1% level. Hence, even after controlling for liquidity risk using
the Pastor-Stambaugh liquidity measure, there remains significant mispricing of downside risk
relative to the Fama-French three factor mode!.

3.6 IsDownside Correlation Risk?

Since the mean-variance framework is rejected by various asset pricing tests, it isnot surprising
that higher-order moments play arole in explaining cross-sectional variationsin expected stock
returns. However, which higher-order moments are important for cross-sectional pricing is still
a subject of debate. We have shown that portfolios sorted by downside correlations produce
large spreads in expected returns which cannot be explained by the market beta, the Fama-
French (1993) SMB and HML factors, by momentum, or by liquidity. The spread in returnsis
also robust across subsamples.

One puzzling result is why high downside correlation stocks exhibit significantly high
variationsin expected returns, while the difference in expected returns between stocks with high
downside beta versus low downside betais weak. Downside correlation is scaled to emphasize
comovements in only direction, while downside beta measures both magnitude and direction.
We acknowledgethat it is hard to think of amodel where the magnitude does not matter but only
the direction does. Even in models with one-sided constraints, for example binding short-sales
constraints (Chen, Hong and Stein, 2001) or wealth constraints (Kyle and Xiong, 2001), there
should be both direction and magnitude effects.

However, downside correlation is the component of downside beta which is unaffected
by changes in idiosyncratic and market volatilities across downside and upside movements.
Conditional correlations strongly differ across up and down markets. However, in down
markets, idiosyncratic stock volatility decreases while market volatility increases (Duffee,
1995). This means that the ratio of total volatility to market volatility decreases in down
markets, which causes the betas to have little variations across downside or upside moves
of the market. Conditional correlations are unaffected by changing idiosyncratic and market
volatilities and they are much more asymmetric across market downside and upside periods.
Hence, conditional correlations are a good statistic to measure asymmetriesin risk.

Lacking an economic model, we are reluctant to say that the high expected returns
commanded by high downside correlation portfolios are due to risk. However, the standard
risk factors cannot price, or even exacerbate, the expected returns of the downside correlation
portfolios. In order to summarize this effect in a model, we capture the spread in returns
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produced by downside correlations by constructing a factor that mimicks this downside
correlation effect. This factor should be able to price the downside correlation portfolios (by
construction) and may also help explain other variations in the cross-section of expected stock
returns.

4 A Downside Correlation Factor

In this section, we build a factor that reflects the high expected returns earned by stocks with
high downside correlations. We describe the construction of thisfactor in Section 4.1, and show
that it prices the downside correlation portfolios in Section 4.2. Section 4.3 shows that the
downside correlation factor significantly predicts economic recessions.

4.1 Constructing the Downside Correlation Factor

We construct a downside correlation factor that captures the return premium between stocks
with high downside correlations and stocks with low downside correlations, which we call the
CMC factor for “high Correlations Minuslow Correlations’. The CMC factor goes long stocks
with high downside correlations, which have high expected returns, and shorts stocks with low
downside correlations, which have low expected returns.

In constructing the CMC factor, we are careful to control for the positive relation shown in
Table (2) between the beta and the downside correlation. The CMC factor extracts the spread
in expected returns due to downside correlation, controlling for the beta. Each month, we place
half of the stocks based on their 5’sinto alow 3 group and the other half into a high 3 group.
Then, within each 3 group, we rank stocks based on their o~ into three groups. alow, amedium
and a high p~ groups with the cutoffs at 33.3% and 66.7%. This sorting procedure creates Six
portfoliosin total.

We calculate monthly value-weighted returns for each of these 6 portfolios. Within the
low 3 group, the portfolio returns increase from the low p~ portfolio to the high p~— portfolio,
with an annualized difference of 2.40% (0.20% per month). Moving across the low 3 group,
portfolio returns of the p~ portfolios increase, while the beta remains flat at around 5 = 0.66.
The return also increases with increasing p— within the high 5 group. Within the high 5 group,
the difference in returns of the high o~ and low p~ portfoliosis 3.24% per annum (0.27% per
month), with at-statistic of 1.98, but the 5 decreases with increasing p~. Therefore, the higher
returns associated with portfolios with high p~ are not rewards for bearing higher market risk,
but are rewards for bearing higher downside correlation.
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For each p~ group, we take the simple average across the two (5 groups and create three
portfolios, which we call the g-balanced p— portfolios. Moving across the g-balanced p—
portfolios, mean returns monotonically increase with p~. This increase is accompanied by a
monotonic decrease, rather than an increase, in beta. We define our downside risk factor, CMC,
asthereturn on azero-cost strategy of going long the 5-balanced high p~ portfolio and shorting
the g-balanced low p~ portfolio. Thisstrategy isrebalanced monthly. Thereturn on thisstrategy
is2.80% per annum (0.23% per month) with at-statistic of 2.35 and a p-value of 0.02.

Since we include every firm listed on NY SEJAMEX and NASDAQ, and use daily data, the
impact of small illiquid firms might be a concern. We address this issue in two ways. First,
al of our portfolios are value-weighted, which reduces the influence of smaller firms. Second,
we perform the same sorting procedure as above, but exclude firms that are smaller than the
tenth NY SE percentile. With this alternative procedure, we find that CMC is still statistically
significant with an average monthly return of 0.23% and at-statistic of 2.04. These checks show
that our results are not biased by small firms.

Table (6) lists the summary statistics for the CMC factor in comparison to the market,
SMB and HML factors of Fama and French (1993), the SKS coskewness factor of Harvey
and Siddique (2000), and the WML momentum factor from Carhart (1997). The CMC factor
has a monthly mean return of 0.23%, which is higher than the mean return of SMB (0.19% per
month) and approximately two-thirds of the mean return of HML (0.32% per month). While
the returns on CMC and HML are statistically significant at the 5% confidence level, the return
on SMB isnot statistically significant. CMC has a monthly volatility of 2.06%, which islower
than the volatilities of SMB (2.93%) and HML (2.65%). CMC also has close to zero skewness,
and it is less autocorrelated (10%) than the Fama-French factors (17% for SMB and 20% for
HML). The Harvey-Siddique SKS factor has a small average return per month (0.10%) and
is not statistically significant. In contrast, the WML factor has the highest average return, over
0.90% per month. However, unlike the other factors, WML is constructed using equal-weighted
portfolios, rather than value-weighted portfolios.

We list the correlation matrix across the various factors in Panel B of Table (6). CMC has
a dlightly negative correlation with the market portfolio of —16%, a magnitude less than the
correlation of SMB with the market (32%) and less in absolute value than the correlation of
HML with the market (—40%). CMC is positively correlated with WML (35%). The correlation
matrix shows that SKS and CMC have a correlation of —3%, suggesting that asymmetric
downside correlation risk has a different effect than skewnessrisk.

Table (6) shows that CMC is quite negatively correlated with SMB (—64%). To alay fears
that CMC is not merely reflecting the inverse of the size effect, we examine the individual
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firm composition of CMC and SMB. On average, 3660 firms are used to construct SMB each
month, of which SMB islong 2755 firms and short 905 firms.? We find that the overlap of the
firms, that SMB isgoing long and CM C is going short, constitutes, on average, only 27% of the
total composition of SMB. Thus, the individual firm compositions of SMB and CMC are quite
different. We find that the high negative correl ation between the two factors stems from the fact
that SMB performs poorly in the late 80's and the 90's, while CM C performs strongly over this
period.

To be surethat CM C isnot merely reflecting the information already captured by the market,
SMB, HML and WML, Panel C of Table (6) regresses CM C on these four factors and a constant.
The CMC factor loads negatively on SMB and HML, which is consistent with the correlation
patternsin Panel B and the fact that high downside correl ation stocks tend to be large stocks and
growth stocks. The loading of CMC on WML is very small (0.07) compared to the magnitude
of the SMB (-0.44) and HML (-0.21) loadings. Net of these |oadings, the intercept term remains
positive and significant, which indicates that CMC is not explained by the other factors. In fact,
the mean return left unexplained increases to 0.33% per month, compared to the unadjusted
mean return of CMC of 0.23% per month.

4.2 Pricing the Downside Correlation Portfolios

The 20 downside correlation portfolios examined in Section 2 cannot be explained by the
market, SMB, HML and WML factors. Our CMC factor ought to explain the variations of these
downside correlation portfolios, since by construction it reflects the spread in expected returns
due to cross-sectional variation in p—. Table (7) revisits the Fama-MacBeth (1973) regression
testsin Section 2 to see if CMC is successful in pricing the downside correlation portfolios.
Model A of Table (7) is the traditional CAPM augmented with the CMC. The estimate of
the premium on CMC is positive and statistically significant. Moreover, the GRS F-test cannot
regject the hypothesisthat the market factor augmented with CMC can price the variationsin the
downside correlation portfolio returns. The premium on CMC continuesto remain positive and
significant after adding the two Fama-French factors in Model B. It is also approximately the
same as the mean CMC premium in Table (6). The GRS test suggests that some of the portfolio
returns are not explained by this model, but this result is only weakly significant (p-value =
0.04). Furthermore, in the presence of the market, the Fama-French factors, and CMC factor,
WML still does not affect the significance of CMC. The GRS test suggests that this model,

2 SMB is long more firms than it is short since the breakpoints are determined using market capitalizations of
NY SE firms, even though the portfolio formation uses all NY SE, AMEX and NASDAQ firms.
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which incorporates CMC, explains the variations in returns of downside correlation portfolios.
In short, CMC successfully prices the downside correlation effect.

4.3 Forecasting M acroeconomic Variables

We briefly explore the relation between downside correlation and the business cycle by
investigating how the downside correlation factor covaries with and macroeconomic variables.
The investigation in this section should be regarded as an exploratory exercise, rather than as
a formal test of the underlying economic determinants of downside risk. Our analysis here
is motivated by studies such as Liew and Vassalou (2000), who show that other return-based
factors, such as the Fama-French (1993) SMB and HML factors, can predict GDP growth and
hence may reflect systematic risk.

We consider six macroeconomic variables which reflect underlying economic activity and
business conditions. Our first two variables are leading indicators of economic activity: the
growth rate in the index of leading economic indicators (L El) and the growth rate in the index of
Help Wanted Advertising in Newspapers (HELP). We al so use the growth rate of total industrial
production (1P). The next three variables measure price and term structure conditions. the CPI
inflation rate, the level of the Fed funds rate (FED) and the term spread between the 10-year
T-bonds and the 3-months T-bills (TERM). All growth rates (including inflation) are computed
asthe differencein logs of theindex at timest and ¢ — 12, where ¢ is monthly.

To examine the connection between downside risk and macroeconomic variables, we run
two sets of regressions. The first set regresses CMC on lagged macro variables, while the
second set regresses macroeconomic variables on lagged CMC. The first set of regressions are
of theform:

3 3
CMCy=a+ Y bMACRO, ;+» cCMCy; + ¢ (12)
i=1 i=1
where we use various macroeconomic variablesfor M ACRO;.

Panel A of Table (8) lists the regression results from equation (12). There is no significant
relation between lagged macroeconomic variables and the CMC factor, except for the first lag
of LEI, which is significantly negatively related with CMC. A 1% increase in the growth rate
of LEI predicts a 27 basis point decrease in the premium of the downside correlation factor.
However, the p-value for the joint test (in the last column of Table (8)) that all lagged LEI are
equal to zero failsto regject the null with p-value=0.09. Overall, with the exception of LEI, there
islittle evidence of predictive power by macroeconomic variablesto forecast CMC returns.
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To explore if the downside correlation factor predicts future movements of macroeconomic
variables we run regressions of the form:

3 3
MACRO; =a+Y bCMCy i+ c;MACRO, ; + €. (13)
i=1 i=1

We also include lagged macroeconomic variables in the right hand side of the regression since
most of the macroeconomic variables are highly autocorrelated. Panel B of Table (8) lists the
regression results of equation (13). We report only the coefficients on lagged CMC. While the
macroeconomic variables provide little forecasting power for CMC, the CMC factor has some
forecasting ability for future macroeconomic variables. In particular, high CMC forecasts lower
future economic activity (HELP, p-value = 0.00; IP, p-value = 0.03), lower future interest rates
(FED, p-value = 0.01) and lower future term spreads (TERM, p-value = 0.03), where the p-
values refer to ajoint test that the three coefficients on lagged CMC in equation (13) are equal
to zero.

In general, these results show that high CMC forecasts economic downturns. The
predictions of high CMC and future low economic activity is seen directly in the negative
coefficients for HELP and IP. Term spreads also tend to be lower in economic recessions.
Estimates of Taylor (1993)-type policy rules on the FED over long samples, where the FED
rateis alinear function of inflation and real activity, show short rates to be lower when output
islow. Hence, the positive correlation of high CMC with future low HELP, low IP, low TERM
and low FED shows that high CM C forecasts economic downturns. In other words, the reward
for holding stocks with high downsiderisk is greater when future economic prospects turn sour,
perhaps because the incidence of extreme market downside moves increases during recessions.

5 An Application to Pricing the M omentum Effect

That a CMC factor, constructed from the p— portfolios, explains the cross-sectional variation
across p~ portfoliosisno surprise. Indeed, we would be concerned if the CMC factor could not
price the p~ portfolios. As an application of the CMC factor, we demonstrate that CMC has
explanatory power to account for some of the momentum effect.

5.1 Dataand Motivation

Why might we expect CMC to help explain some of the momentum effect? We first present
evidence that momentum strategies tend to perform poorly when the market makes extreme
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downward moves. To show this, we work with Jegadeesh and Titman (1993)’s momentum
portfolios, corresponding to the J=6 month formation period, which is standard in the literature
(Chordia and Shivakumar, 2001). After stocks are sorted into deciles based on their past 6
month returns, they are held for the next K months holding periods, where K = 3, 6, 9 or
12. We form an equal-weighted portfolio within each decile and cal culate overlapping holding
period returns for the next X' months.

Figure (3) plotsthe average returns of the 40 portfolios sorted on past 6 monthsreturns. The
average returns are shown with *’s. There are 10 portfolios corresponding to each of the K'=3,
6, 9 and 12 months holding periods. Figure (3) shows average returns to be increasing across
the deciles (from losers to winners) and are roughly the same for each holding period K. The
differencesin returns between the winner portfolio (decile 10) and the loser portfolio (decile 1)
are 0.54, 0.77, 0.86 and 0.68 percent per month, with corresponding t-statistics of 1.88, 3.00,
3.87and 3.22, for K=3, 6, 9 and 12 respectively. Hence, the return differences between winners
and losers are significant at the 1% level except the momentum strategy corresponding to £ =3.
Figure (3) aso showsthe p— of the momentum portfolios, which increase going from the losers
to the winners, except at the highest winner decile. Hence, the momentum strategies generally
have a positive relation with downside correlation exposure.

Panel A of Table (9) shows the exposure of momentum strategies to downside risk. This
table shows the Fama-French alphas for the losers (first decile) and winners (tenth decile) for
each holding period K. The exposure of the momentum strategies to downsiderisk is revealed
by comparing the a phas from the full sample to the al phas from a subsample where the market
experiences extreme downward moves. An extreme downward move is defined to be a move
that is more negative than two standard deviations below the unconditional mean. There are 41
such observations out of 432 total months.

During thefull sample, the Fama-French aphasfor winnersare higher than losers. However,
during periods of market distress, this pattern is reversed so winners perform worse than losers.
The very few observations during these extreme down periods means that we should be very
reluctant to conclude that winners have higher downside risk than losers, especially given the
very low levels of the t-statistics. Nevertheless, the point estimates do show that |osers perform
better than winners during market downturns.®

We observe the same effect for the downside correlation portfolios from Table (2) in Panel
B. High downside correlation stocks have higher unconditional returns than low downside

3 For periods when the market return is less than two standard deviations below the mean, athough winners
under-perform losers, the pattern moving across the decile portfolios from losers to winners is not monotonic.
However, the 10th decile (winners) always underperforms the bottom decile (losers) across all K holding periods.
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correlation stocks to compensate for their much lower returns when the market crashes. If
arbitraguers are averse to downside risk in the momentum strategies, they would demand
compensation into order to bear such risk. We hope that the CMC factor may pick up some
of the downside exposure of the momentum portfolios. Indeed, Table (9) suggests that the
momentum portfolios and the downside correlation portfolios both reflect downside risk.

Panel C of Table (9) examinesthe economic reduction in the momentum premium by adding
aCMC factor. Model A of Table (9) regresses WML onto a constant, the MKT and the CMC
factor. Thisregression has an R? of 12%, and a significantly positive loading. The CMC factor
reduces the momentum raw return (0.90% per month) to 0.72% per month, areduction of 2.18%
per annum. In Model B, the Fama-French (1993) WML alphais 1.05% per month, and adding
the CMC factor reduces this, in Model C, to 0.86% per month, which is a reduction of 2.30%
per annum. Hence, while the momentum effect cannot be completely explained by downside
correlation, Panel C of Table (9) showsthat CM C has some explanatory power for WML which
the other factors (MKT, SMB, HML) do not have.

5.2 Fama-MacBeth (1973) Cross-Sectional Test

We now conduct formal cross-sectional estimations of the relation between downside risk and
expected returns of momentum returns in Table (10) with Fama-MacBeth tests. Using data on
the 40 momentum portfolios corresponding to the J=6 formation period, we first examine the
Fama-French (1993) model in Model A. The estimates of the risk premiafor SMB and HML
are negative, which reflect the fact that the loadings on SMB and HML go the wrong way for
the momentum portfolios.

In comparison, Model B adds CMC as a factor together with the market. The estimated
premium on CMC is 8.76% per annum (0.73 per month) and statistically significant at the 5%
level. These results do not change when SMB and HML are added in Model C. In Model D, we
augment the Carhart (1997) four-factor model (MKT, SMB, HML and WML) with CMC. The
factor premiaon WML and CMC are both significant. The fact that CMC remains significant
at the 5% level (t-stat=2.01) in the presence of WML shows that CMC is picking up some of
the momentum effect reflecting downside risk. Moreover, the magnitude of the CMC factor
loading remains relatively unchanged after adding WML.

Figure (4) graphstheloadings of each momentum portfolioon MKT, SMB, HML and CMC.
The loadings are estimated from the time-series regressions of the momentum portfolios on the
factors from the first step of the Fama-MacBeth (1973) procedure. We see that for each set
of portfolios, as we go from the past loser portfolio (decile 1) to the past winner portfolio
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(decile 10), the loadings on the market portfolio remain flat, so that beta has little explanatory
power. The loadings on SMB decrease from the losers to the winners, except for the last two
deciles. Similarly, the loadings on the HML factor also go in the wrong direction, decreasing
monotonically from the losers to the winners.

In contrast to the decreasing loadings on the SMB and HML factors, the loadings on the
CMC factor in Figure (4) amost monotonically increase from strongly negative for the past
loser portfolios to slightly positive for the past winner portfolios. The increasing loadings on
CMC across the decile portfolios for each holding period K are consistent with the increasing
p~ statistics across the decilesin Figure (3). Winner portfolios have higher p~, higher loadings
on CMC, and higher expected returns. The negative loadings for loser stocks imply that losers
have higher downside correlation exposure than winners. This reflects the evidence in Table
(9), which shows that past winner stocks do poorly when the market has large moves on the
downside, while past loser stocks perform better in these extreme periods.

5.3 GMM Hypothesis Tests

Using GMM cross-sectional estimations (described in the Appendix), we can conduct some
additional hypothesis tests for the goodness of fit for the various modelsin Table (10) to price
the momentum effect. Taking Model C as an unconstrained model and using its weighting
matrix to re-estimate Model A, we can conduct a y? over-identification test. This tests rejects
the null hypothesis of the Fama-French model with a p-value=0.02. Hence, CM C does provide
additional explanatory power for the cross-section of momentum portfolios which the Fama-
French model does not provide. Model D of Table (10) nests Model C, which uses MKT, SMB,
HML and CMC factors. We run a x? over-identification test with the null of Model C against
the alternative of Model D, which rejects with a p-value of 0.01. Hence, we conclude that
WML still has further explanatory power, in the presence of CMC, to price the cross-section of
momentum portfolios.

We graph the average pricing errors for the models in Figure (5), following Hodrick and
Zhang (2001). The pricing errors are computed using the weighting matrix, Wz = E[R,R}|~",
where R; is a vector of gross returns of the base assets. Since the same weighting matrix
is used across al of the models, we can compare the differences in the pricing errors for
different models. Figure (5) displays each momentum portfolio on the z-axis, where the first
ten portfolios correspond to the K = 3 month holding period, the second ten to the K’ = 6
month holding period, the third ten to the X' = 9 month holding period, and finaly the fourth
ten to the K = 12 holding period. The 41st asset is the risk-free asset. The figure plots two
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standard error boundsin solid lines, and the pricing errors for each asset in *’s.

Figure (5) shows that the CAPM has most of its pricing errors outside the two standard
error bands and shows that the loser portfolios are the most difficult for the CAPM to price.
The Fama-French model has most difficulty pricing past winners; the pricing errors of every
highest winner portfolio lies outside the two standard error bands. The model using MKT and
CMC factors is the only model that has al the pricing errors within two standard error bands.
However, adding CMC to the Fama French model or the Carhart model does not change the
pricing errors of the assets very much.

While Figure (5) can give us a visual representation of the pricing errors, we can formally
test if al the pricing errors are zero by using a Hansen-Jagannathan (1997) (HJ) test (see the
Appendix for further details). This tests overwhelmingly rejects, both asymptotically and with
small-sample simulations, the null that the pricing erros are jointly zero for all the models.
Although all pricing errors for the model of MKT and CMC fall within the two standard error
bands, the HJ tests reject this model because because the HJ distance does not assign an equal
weight to all the portfolios in the test. Hence, while momentum portfolios do seem to have
exposure to downside risk, the CMC factor only modestly reduces the momentum premium by
2.18%, and although it comes out significant in cross-sectional tests with momentum assets,
CMC cannot completely account for all the momentum effect.

6 Conclusion

We find that stocks with high downside correlations have higher expected returns than stocks
with low downside correlations. The portfolio of stockswith the greatest downside correlations
outperformsthe portfolio of stocks with the lowest downside correlations by 4.91% per annum.
Downside correlation is distinct from market risk and liquidity risk, and it is not mechanically
linked to past returns. Moreover, controlling for the market beta, the size effect and the book-to-
market effect increasesthe difference in the returns between the highest and the lowest downside
correlation portfoliosto 6.55% per annum. To capture this asymmetry, we construct adownside
correlation factor (CMC) that goes long stocks with high downside correlations and goes short
stocks with low downside correlations. The CMC factor is priced by portfolios of stocks sorted
by downside correlations, and exposure to this downside correlation factor helps explain some
of the profitability of momentum strategies.

While most economic models would suggest that both the magnitude and the direction of
risk ought to matter, our downside correlation measure only captures the direction of downside
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comovements, but not the magnitude of the comovements. The decomposition of the betas
show that the action of total and market volatilities confound the magnitudes of joint downside
movements. In particular, the ratio of total to market volatility decreases on the downside,
which causes conditional betas to exhibit little asymmetry across the downside and the upside.
In contrast, conditional correlations are immune to these effects and exhibit highly asymmetric
patterns across downside and upside market movements. Hence, conditional correlations appear
to be a cleaner measure of asymmetric exposure to risk than conditional betas.

While we show that high downside correlation stocks command high expected returns that
cannot be accounted for by the standard risk factors, our empirical work leaves unexplained
what underlying economic mechanisms cause some stocks to exhibit greater downside risk,
and why investors demand compensation for exposures to such risk. A more difficult task
is capturing the interaction between idiosyncratic and market volatility across up and down
markets which causes conditional betas to have little asymmetry across downside and upside
markets, while conditional correlations exhibit pronounced asymmetry across downside and
upside markets. Economies with frictions and hidden information (Hong and Stein, 2001) or
with agents facing binding wealth constraints (Kyle and Xiong, 2001) have both significant
direction and magnitude effects. Although representative agent models with asymmetric utility
functions, like first-order risk aversion (Bekaert, Hodrick and Marshall, 1997) or loss aversion
(Barberis, Huang and Santos, 2001), have not been calibrated in the cross-section, these models
would also assign alarger role to conditional betas than to conditional correlations.
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Appendix

A Dataand Portfolio Construction

Data Sour ces

We use data from the Center for Research in Security Prices (CRSP) to construct portfolios of stocks sorted by
various characteristics of returns. We confine our attention to ordinary common stocks listsed on NY SE, AMEX
and NASDAQ, omitting ADRs, REITSs, closed-end funds, foreign firms and other securities which do not have a
CRSP share type code of 10 or 11. We use daily returns from CRSP for the period covering January 1st, 1964 to
December 31st, 1999, including NASDAQ datawhich is only available post-1972. We use the one-month risk-free
rate from CRSP and take CRSP's value-weighted returns of all stocks as the market portfolio. All our returns are
expressed as continuously compounded returns.

The 48 industry portfolios are from Fama and French (1997) and are obtained from Kenneth French’s website
at http://web.mit.edu/kfrench/www/datalibrary.html. The Fama and French (1993) factors, SMB and HML, are
also from the data library at Kenneth French’s website.

Higher Moment Portfolios

We construct portfolios based on correlations between asset i's excess return r;; and the market’s excess return
rme conditional on downside moves of the market (p ~) and on upside moves of the market (p™). We aso
constuct portfolios based on coskewness, cokurtosis, 3, 8 conditional on downside market movements (3 ~), and
3 conditional on upside market movements (3 ).

Coskewness s defined, following Harvey and Siddique (2000), as:

E[fi,tcfn,t]

Ble? JEle2, ]

m,t

coskew = (A-1)

where e;; = i — a; — B M KTy, is the residua from the regression of r; ; on the contemporaneous excess
market return, and e, ; isthe residual from the regression of the market excess return on a constant. Similar to the
definition of coskewnessin equation (A-1), we define cokurtosis as:

E[ei,tefn,t]

Ele; ] (Ele,,q])

cokurt = (A-2)

3 -
2

At the beginning of each month, we calculate each stock’s moment measures using the past year's daily log
returns from the CRSP daily file. For the moments which condition on downside or upside movements, we define
an observation at time ¢ to be adownside (upside) market movement if the excess market return at ¢ isless than or
equal to (greater than or equal to) the average excess market return during the past one year period in consideration.
We require a stock to have at least 220 observationsto be included in the cal culation. These moment measures are
then used to sort the stocks into deciles and a value-weighted return is calculated for all stocksin each decile. The
portfolios are rebalanced monthly.

SKSand WML Factor Construction

Harvey and Siddique (2000) use 60 months of data to compute the coskewness defined in equation (A-1) for
al stocks in NYSE, AMEX and NASDAQ. Stocks are sorted in order of increasing negative coskewness. The
coskewness factor SKSis the value-weighted average returns of firmsin the top 3 deciles (with the most negative
coskewness) minusthe value-weighted average return of firmsin the bottom 3 deciles (stockswith the most positive
coskewness) in the 61st month.

Following Carhart (1997), we construct WML as the equally-weighted average of firms with the highest 30
percent eleven-month returns lagged one month minus the equally-weighted average of firms with the lowest 30
percent eleven-month returnslagged one month. In constructing WML, all stocksin NY SE, AMEX and NASDAQ
are used and portfolios are rebalanced monthly.
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Liquidity Factor and Liquidity Betas

We follow Pastor and Stambaugh (2001) to construct an aggregate liquidity measure, L. Stock return and volume
dataare obtained from CRSP. NASDAQ stocks are excluded in the construction of the aggregateliquidity measure.
Theliquidity estimate, v; ;, for an individual stock ¢ in month ¢ is the ordinary least squares (OLS) estimate of -y ¢
in the following regression:

T a1 = it + GitTiae + Viesign (Tf,d,t) Vidt+ €idyie, d=1,...,D. (A-3)

In equation (A-3), 7; 4.+ iSthe raw return on stock : on day d of month ¢, Tf,d,t = T4t — Im,d,+ ISthe stock return
in excess of the market return, and v; 4+ is the dollar volume for stock i on day d of month ¢. The market return
on day on day d of montht, r,, 4+, istaken as the return on the CRSP value-weighted market portfolio. A stock’s
liquidity estimate, v; ¢, is computed in a given month only if there are at least 15 consecutive observations, and if
the stock has a month-end share prices of greater than $5 and less than $1000.

Theaggregateliquidity measure, L, iscomputed based on theliquidity estimates, v; ., of individual firmslisted
on NY SE and AMEX from August 1962 to December 1992. Only the individual liquidity estimates that meet the
above criteriais used. To construct the innovations in aggregate liquidity, we follow Pastor and Stambaugh and
first form the scaled monthly difference:

N
. m 1
Ay = (m—j> N > (i = viao1)s (A-4)

i=1

where NV isthe number of available stocks at month ¢, m; isthe total dollar value of the included stocks at the end
of month ¢t — 1, and m; isthetotal dollar value of the stocks at the end of July 1962. The innovationsin liquidity
are computed as the residual s in the following regression:

Ady = a4+ bAYi_1 + c(me/ma) Y1 + ug. (A-5)

Finally, the aggregate liquidity measure, L, istaken to be the fitted residuals, L; = ;.

To calculate the liquidity betas for individual stocks, at the end of each month between 1968 and 1999, we
identify stockslisted on NY SE, AMEX and NASDAQ with at least five years of monthly returns. For each stock,
we estimate a liquidity beta, 3%, by running the following regression using the most recent five years of monthly
data:

rig =B+ BEL+ BMMKT, + 37 SMB, + B HM Ly + €; 4, (A-6)

wherer; ; denotes asset i's excess return and L, is the innovation in aggregate liquidity.

Momentum Portfolios

To construct the momentum portfolios of Jegadeesh and Titman (1993), we sort stocks into portfolios based on
their returns over the past 6 months. We consider holding period of 3, 6, 9 and 12 months. This procedureyields
4 strategies and 40 portfoliosin total. We illustrate the construction of the portfolios with the example of the’6-6’
strategies. To construct the '6-6' deciles, we sort our stocks based upon the past six-months returns of al stocks
in NY SE and AMEX. Each month, an equal-weighted portfolio is formed based on six-months returns ending one
month prior. Similarly, equal-weighted portfolios are formed based on past returns that ended one months prior,
three months prior, and so on up to six months prior. We then take the simple average of six such portfolios. Hence,
our first momentum portfolio consists of 1/6 of the returns of the worst performers one month ago, plus 1/6 of the
returns of the worst performers two months ago, etc.

M acr oeconomic Variables

We use the following macroeconomic variables from the Federal Reserve Bank of St. Louis: the growth rate
in the index of leading economic indicators (LEI), the growth rate in the index of Help Wanted Advertising in
Newspapers (HELP), the growth rate of total industrial production (IP), the Consumer Price Index inflation rate
(CPI), the level of the Fed funds rate (FED), and the term spread between the 10-year T-bonds and the 3-months
T-bills (TERM). All growth rates (including inflation) are computed as the difference in logs of the index at times
tandt — 12, where ¢t ismonthly.
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B Fama-MacBeth and GMM Cross-Sectional Tests
Fama-MacBeth (1973) Cross-Sectional Tests

We consider linear cross-sectional regressional models of the form:
E(rit) = Mo + X' 3, (B-1)

inwhich )y isascalar, A isa M x 1 vector of factor premia, and 3; isan M x 1 vector of factor loadings for
portfolio . The Fama-MacBeth (1973) is atwo-step cross-sectional estimation procedure.
In thefirst step, we use the entire sample to estimate the factor loadings, 3;:

T'it :ai_'_Ftlﬂi_'_git; t= 1,27"'T7 (B_Z)

where o; isascalar and F; isa M x 1 vector of factors. In the second step, we run a cross-sectional regression at
eachtime ¢ over NV portfolios, holding the 3;’s fixed at their estimated values, 3;, in equation (B-2):
Tit = Ao + )\Iﬁi 4wy, t=1,2,...N. (B-3)

Thefactor premia, A, are estimated as the averages of the cross-sectional regression estimates:

o1&
A= ;/\t. (B-4)
The covariance matrix of A, X, is estimated by:
R 1 & .
Sn=mm 2 (=N =), (89
t=1

where ) isthe mean of \.
Since the factor loadings are estimated in the first stage and these loadings are used as independent variables
in the second stage, there is an errors-in-variables problem. To remedy this, we use Shanken’s (1992) method to

adjust the standard errors by muiltiplying X, with the adjustment factor (1+X'S ' X) !, where X isthe estimated
covariance matrix of the factors F;.

GMM Cross-Sectional Tests

The standard Euler equation for agrossreturn, R ;;, is given by:
E(miRy) = 1. (B-6)
Linear factor models assume that the pricing kernel can be written as alinear combination of factors:
my = 0 + 81 Fy, (B-7)

where F; isa M x 1 vector of factors, § isascalar, and 6, isa M x 1 vector of coefficients. The representation
in equation (B-7) is equivalent to alinear beta pricing model:

E(Ry) = Xo + X' i, (B-8)
which is analogous to equation (B-1) for excess returns. The constant A is given by:

1 1
E(m;) b0+ 01 E(F)’

Ao =

the factor loadings, 3;, are given by:
ﬂi = COV(Ft, Ftl)_ICOV(Ft, Rit)a

and the factor premia, A, are given by:

1
A = ——cov(Fy, F})d;.
do
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To test whether afactor j is priced, we test the null hypothesis Hy : A; = 0.
Letting R; denotean NV x 1 vector of grossreturns R; = (R, - . -, Rn¢)', and denoting the parameters of the
pricing kernel as § = (4o, d1)’, the sample pricing error is:

T
gr(®) = 7S (iR~ 1) (8-9)
t=1

The GMM estimate of § is the solution to:

méin J=T x g¢:Wrgr, (B-10)

where W is aweighting matrix.

Hansen-Jagannathan (1997) Test
Jagannathan and Wang (1996) derive the asymptotic distribution of the HJ distance metric:

HJ =\/gr(0)'E[R.R{]~'gr(5), (B-11)

which can beinterpreted as the least-sguare distance between a given pricing kernel and the closest point in the set
of the pricing kernels that can price the base assets correctly. The asymptotic distribution of 7' x (H.J) 2 involves
aweighted sum of (N — K — 1) x? statistics. Theweightsarethe N — K — 1 non-zero eigenval ues of:

—1 1 ’

A=stwi [1=-WhDr(DyWrDr) tDywE | WhsE,

where 57%1 and Wﬁ are the upper-triangular Cholesky decompositionsof S and W respectively, and Dy = 857—5.
The matrix S is the optimal weighting matrix, where W3 = S7.' = [T - cov(gr, g/)]~". Jagannathan and Wang
show that A hasexactly N — K — 1 positiveeigenvalues®,...,0n_x 1. The asymptotic distribution of the HJ

distance metricis:
N-K-1

X (HI)? = > 0ix3
J

asT — oo. We simulate the HJ statistic 100,000 times to compute the asymtotic p-value of the HJ distance.

To calculate a small sample p-vaue for the HJ distance, we assume that the linear factor model holds and
simulate a data generating process (DGP) with 432 observations, the same length as in our samples. The DGP
takesthe form:

rie =ri_1 + BiF + €, (B-12)

wherer; ; isthereturn on the i-th portfolio, r{ istherisk-freerate, 3; isan M x 1 vector of factor loadings, and F
isthe M x 1 vector of factors. We assume that the risk-free rate and the factors follow afirst-order VAR process.

Let X, = (r/, F,)', and X, follows:
Xt =p+ AXi1 +uy, (B-13)

where u; ~ N(0,%). We estimate this VAR system and use the estimates /i, A and 3 as the parameters for
our factor generating process. In each simulation, we generate 432 observations of factors and the risk-free rate

from the VAR system in equation (B-13). For the portfolio returns, we use the sample regression coefficient of

each portfolio return on the factors, BZ as our factor loadings. We assume the error terms of the base assets, ¢,
follow 11D multivariate normal distributions with mean zero and covariance matrix, ¥, — 'Y 3, where ¥, isthe
covariance matrix of the assets and 3 F isthe covariance matrix of the factors.

For each model, we simulate 5000 time-series as described above and compute the HJ distance for each
simulation run. We then count the percentage of these HJ distancesthat are larger than the actual HJ distance from
real data and denote this ratio empirical p-value. For each simulation run, we also compute the theoretic p-value
which is calculated from the asymptotic distribution.
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Table 1: Portfolios Sorted on Past 3, 5~ and 5

Panel A: Portfolios Sorted on Past 3

Portfolio Mean Std Auto g High-Low t-stat
lLow g 090 372 013 042 0.23 0.70
2 093 319 020 049
3 101 333 018 059

4 095 362 014 0.70
5 113 378 0.08 0.76
6 102 384 006 0.79
7 1.00 437 0.07 0.93
8 097 487 007 104
9 107 580 0.08 123
10 High g8 113 763 005 157

Panel B: Portfolios Sorted on Past 5~

Portfolio Mean Std Auto g 8- p- k— High-Low t-stat

l1Lowg™ 078 421 016 067 089 071 126 0.31 1.04
2 093 374 014 068 074 073 102
3 099 371 009 073 082 083 098
4 109 392 005 080 088 089 0.99

5 105 400 006 08 089 091 0.98
6 106 452 007 098 098 093 1.06
7 111 482 004 104 102 092 111
8 124 539 005 117 112 092 121
9 122 626 004 132 130 089 146
10 High g~ 109 781 008 157 152 084 182

Panel C: Portfolios Sorted on Past 3+

Portfolio Mean Std Auto S gt pt kT High-Low t-stat
lLow B+ 105 546 016 093 0.77 046 1.67 -0.05 -0.21
2 106 433 019 083 067 059 114
3 105 406 016 080 069 067 104
4 101 410 011 083 082 075 1.09
5 098 403 013 084 079 0.75 105
6 105 407 006 087 086 084 1.02
7 107 435 006 094 090 086 1.05
8 102 465 004 101 098 088 111
9 112 525 005 112 113 086 131
10 High g+ 100 677 006 141 145 080 1.81

The table lists summary statistics for value-weighted 3, 3~ and 3+ portfoliosat a monthly frequency, where
B~ and 31 are defined in equation (3), setting & = M KT. For each month, we calculate 8 (8 ~, 31 )
of al stocks based on daily continuously compounded returns over the past year. We rank the stocks into
deciles (1-10), and calcul ate the value-wei ghted simple percentage return over the next month. We rebalance
the portfolios monthly. Means and standard deviations are in percentage terms per month. Std denotes the
standard deviation (volatility), Auto denotes the first autocorrelation, and 3 is post-formation the beta of the
portfolio. The columns labeled 3~ (81) and p~ (p™) show the post-formation downside (upside) betas and
downside (upside) correlations of the portfolios. The column labeled k + (k) lists the ratio of the volatility
of the portfolio to the volatility of the market, both conditioning on the downside (upside). High-Low isthe
mean return difference between portfolio 10 and portfolio 1 and t-stat gives the t-statistic for this difference.
T-statistics are computed using Newey-West (1987) heteroskedastic-robust standard errors with 3 lags. The
sample period is from January 1964 to December 1999.
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Table 2: Portfolios Sorted on Conditional Correlations

Panel A: Portfolios Sorted on Past p—

Portfolio Mean Std  Auto g FFa Size BIM Lev p~ 8-
lLowp— 077 418 015 069 -037 261 063 49 074 094
0.88 434 017 081 -030 292 062 471 080 0.97
087 432 015 083 -031 319 060 4838 0.82 0.9
094 439 015 087 024 346 058 438 083 097
097 439 010 090 -019 374 056 515 085 0.9
100 445 009 094 -016 4.04 053 449 090 101
100 464 009 100 -015 439 050 706 092 1.02
103 458 008 100 -010 482 048 404 094 1.05
112 477 002 105 002 536 046 542 096 1.08
OHighp~ 117 476 001 104 016 638 039 440 094 097

POO~NOUIWN

High-Low 040 226

Panel B: Portfolios Sorted on Past p*

Portfolio Mean Std Auto g FFa Size B/IM Lev p—
1lowp™ 113 456 017 082 002 283 060 752 050 063
2 105 463 019 09 -013 308 059 618 063 078
3 109 461 016 092 -010 324 058 451 068 082
4 106 467 015 094 -013 344 056 457 0.70 085
5 099 462 014 09 -018 366 054 447 076 091
6 103 462 012 097 -017 391 054 442 0.78 090
7 100 470 009 101 -018 423 052 484 084 097
8 111 467 008 101 -006 465 052 425 085 096
9 112 463 007 102 -001 527 048 471 092 102
10Highpt 107 452 000 100 007 665 036 435 095 1.06

High-Low -0.06 -0.38

The table lists summary statistics of the value-weighted p ~ and p™ portfolios at a monthly frequency, where
p~ and pT aredefined in equation (5), setting # = M KT For each month, we calculate p ~ (p™) of all stocks
based on daily continuously compounded returns over the past year. We rank the stocks into deciles (1-10),

and calculate the value-weighted simple percentage return over the next month. We rebalance the portfolios
at a monthly frequency. Means and standard deviations are in percentage terms per month. Std denotes the
standard deviation (volatility), Auto denotes the first autocorrelation, and 3 is the post-formation beta of the
portfolio with respect to the market portfolio. The column labeled FF « lists the o from a regression of the
excess p~ portfolio return on the Fama-French (1993) model at a monthly frequency. At the beginning of

each month ¢, we compute each portfolio’s simple average log market capitalization in millions (size) and

value-weighted book-to-market ratio (B/M). The column Lev is the simple average of firms leverage ratio

which is defined as the ratio of book value of asset to book value of equity. The columns labeled p — (p™)
and 3~ (87T) show the post-formation downside (upside) correlations and downside (upside) betas of the
portfolios. High—Low is the mean return difference between portfolio 10 and portfolio 1 and t-stat gives
the t-statistic for this difference. T-statistics are computed using Newey-West (1987) heteroskedastic-robust
standard errors with 3 lags. The sample period is from January 1964 to December 1999.

33



Table 3: Pricing the Downside Correlation Portfolios (1)

Factor Premiums A

Ao MKT SMB HML WML GRS Test

Model A: Fama-French Model

Premium()\) 054 065 -046 0.06 3.24
t-stat 241* 020 -178 0.19 p-val=0.00**

Model B: Fama-French Factorsand WML

Premium(A) 049 012 -043 013 0.69 231
t-stat 203 036 -160 039 099 p-val=0.00**

The table shows the results from Fama-MacBeth (1973) regression tests on 20 downside correlation
portfolios. These portfolios are formed in the following fashion. Stocks are first sorted into two groups
according to their past beta over the past year, using daily returns (high beta versus low beta). Each group
consists of one half of all firms. Then, within each beta group, we rank stocks based on their p —, aso
computed using daily data over the past year into decile portfolios. Thisgivesus 2 (3) x 10 (p ~) portfolios,
making a total of twenty downside correlation portfolios. MKT is the CRSP value-weighted returns of al
stocks. SMB and HML are the size and the book-to-market factors (constructed by Famaand French (1993)),
WML is the return on the zero-cost strategy of going long past winners and shorting past losers (constructed
following Carhart (1997)). T-statistics are computed using Shanken (1992) adjusted standard errors. GRS
denotesthe F-test of Gibbons, Ross and Shanken (1989) testing the hypothesisthat the s of al 20 portfolios
are jointly zero. T-statistics that are significant at the 5% (1%) level are denoted with * (**). The sample
period is from January 1964 to December 1999.

Table 4: Subsample Analysis of p~ PortfoliosHigh - Low a’s

FF FF + WML
101 tstat 101 t-stat

Full Sample 056 473 044 345

Two Subsamples
Jan 1964 - Dec 1981 044 266 032 184
Jan 1982 - Dec 1999 066 397 052 290

NBER Business Cycles
Expansions 044 359 028 210
Recessions 113 355 114 365

We report the differencein monthly o’s for the tenth and the first decile beta-controlled p — portfolios, with t-
statistics computed using Newey-West (1987) heteroskedastic-robust standard errors with 3 lags. FF denotes
the Fama and French (1993) model, and FF+WML denotes the Fama-French model augmented with Carhart
(1997)’sWML momentum factor.



Table 5: Downside Correlation Controlling for Past Returns and Liquidity
Panel A: Downside Correlation Portfolios Controlling for Past Returns

a b s h t(a)  t(b) t(s) t(h) R?
lLowp~ -040 080 069 041 -500 3502 1830 1158 0.88

2 -040 090 060 034 -519 36:09 1572 722 091
3 -027 099 046 023 -3.79 4229 1237 467 093
4 -017 107 032 012 -249 5012 880 260 094

5Highp~ -007 110 011 -010 -1.09 5996 377 -293 0.9
as-a; = 0.33 t-stat = 3.03
Panel B: Downside Correlation Portfolios Controlling for Liquidity

a b s h t(a)  t(b) t(s) t(h) R?
lLowp~ -018 081 054 045 -238 3089 1264 1269 0.86

2 -0.17 091 044 037 -214 3651 1132 729 091
3 -012 098 026 023 -167 4677 800 490 0.93
4 -0.05 102 011 010 -076 6021 393 268 096

5Highp~ 008 107 -013 -013 180 9083 -7.70 -470 0.98

as-a; = 0.26 t-stat = 2.62

This table shows the time-series regressions of excess returns on portfolios formed by a double sort that
controls for past returns and a double sort that controls for liquidity. In Panel A, we first sort stocks
into quintiles by their past 6 months returns (momentum). Then, we sort stocks within each past return
quintiles into additional quintiles according to p—. The intersection of these quintiles forms 25 portfolios.
The portfolios in Panel A are the averages across past return quintiles of the portfolios sorted by p ~.
In Panel B, we sort stocks into quintiles by 4% and independently sort stocks into separate quintiles
according to p—. The intersection of these quintiles forms 25 portfolios. The portfolios in Panel B are
the averages across 3 quintiles of the portfolios sorted by p~. In both Panel A and Panel B, we report
the coefficients from a time-series regression of the portfolio returns onto the Fama-French (1993) factors:
rit = a; +b;M KT+ s;SM By + h;HM Ly + €;:. Columnslabeled ¢() show the t-statistics of the regression
coefficients computed using Newey-West (1987) heteroskedastic-robust standard errors with 3 lags. The
regression R? is adjusted for the number of degrees of freedom. January 1968 to December 1999. a 5-a; is
the difference in the alphas a between the 5th quintile and the first quintile.
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Table 6: Summary Statistics of the Factors
Panel A: Summary Statistics

Factor Mean Std Skew Kurt Auto
MKT 055* 440 -051 550 0.06
SMB  0.19 293 017 384 017
HML 0.32* 265 -012 393 0.20
WML 0.90** 3838 -105 7.08 0.00
SKS 0.10 226 069 745 0.08
CMC 023* 206 004 541 0.10

Panel B: Correlation Matrix

MKT SMB HML WML SKS CMC
MKT 1.00
SMB 032 1.00
HML 040 -016 1.00
WML 000 -027 -014 1.00
SKS 013 008 003 -001 1.00
CMC -016 -0.64 -0.17 035 -0.03 1.00

Panel C: Regression of CM C onto Various Factors

Constant MKT SMB HML WML
coef  0.33 -0.03 -0.44 -0.21 0.07
t-stat  4.02** -1.47  -11.02** -5.84** 2.65**

Panel A shows the summary statistics of the factors. MKT is the CRSP value-weighted returns of all stocks.
SMB and HML arethe size and the book-to-market factors (constructed by Famaand French (1993)), WML is
the return on the zero-cost strategy of going long past winners and shorting past losers (constructed following
Carhart (1997)), and SKS is the return on going long stocks with the most negative past coskewness and
shorting stocks with the most positive past coskewness (constructed following Harvey and Siddique (2000)).
CMC is the return on a portfolio going long stocks with the highest past downside correlation and shorting
stocks with the lowest past downside correlation. The first two columns show the means and the standard
deviations of the factors, expressed as monthly percentages. Skew and Kurt are the skewness and kurtosis of
the portfolio returns. Auto refersto first-order autocorrelation. Factors with statistically significant means at
the 5% (1%) level are denoted with * (**), using heteroskedastic-robust Newey-West (1987) standard errors
with 3 lags. The correlation matrix between the factorsis reported in Panel B. Panel C reports the regression
of CMC onto MKT, SMB, HML and WML factors, with t-statistics computed using 3 Newey-West lags. T-
statistics that are significant at the 5% (1%) level are denoted with * (**). The sample period is from January
1964 to December 1999.
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Table 7: Pricing the Downside Correlation Portfolios (2)

Factor Premiums A

Ao MKT SMB HML WML CMC GRSTest

Model A: MKT and CMC

Premium()\) 062  -0.04 0.23 1.28
t-stat 408 -0.15 2.18* p-val=0.18

Model B: Fama-French Factorsand CMC

Premium()\) 057 003 -0.36 002 0.22 1.65
t-stat 255 009 -1.08 007 207* p-val=0.04*

Model C: Fama-French Factors, WML, and CMC

Premium()) 050 010 -039 011 064 021 1.34
t-stat 211* 029 -115 033 088 201* pva=0.15

The table shows the results from Fama-MacBeth (1973) regression tests on 20 downside correlation
portfolios. These portfolios are formed in the following fashion. Stocks are first sorted into two groups
according to their past beta over the past year, using daily returns (high beta versus low beta). Each group
consists of one half of all firms. Then, within each beta group, we rank stocks based on their p —, aso
computed using daily data over the past year into decile portfolios. Thisgivesus 2 (3) x 10 (p ~) portfolios,
making a total of twenty downside correlation portfolios. MKT is the CRSP value-weighted returns of all
stocks. SMB and HML are the size and the book-to-market factors (constructed by Famaand French (1993)),
WML is the return on the zero-cost strategy of going long past winners and shorting past losers (constructed
following Carhart (1997)). CMC isthe return on aportfolio going long stocks with the highest past downside
correlations and shorting stocks with the lowest past downside correlations. T-statistics are computed using
Shanken (1992) adjusted standard errors. GRS denotes the F-test of Gibbons, Ross and Shanken (1989)
testing the hypothesis that the «’s of all 20 portfolios are jointly zero. T-statistics that are significant at the
5% (1%) level are denoted with * (**). The sample period is from January 1964 to December 1999.
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Table 8: Macroeconomic Variablesand CMC
Panel A: CMC; =a+ Y2 biMACRO; i+ Y0 | ¢;CMCy i + ¢

MACRO;_1 MACRO;_» MACRO;_3 Joint S|g

LEI coef —0.27 0.22 0.06 0.09
t-stat —2.27* 124 0.60

HELP coef -0.00 -0.04 0.05 0.24
t-stat  -0.12 -1.26 1.97

IP coef -0.13 0.18 -0.02 0.16
t-stat  —1.39 143 -0.22

CPI coef 0.17 -0.03 -0.18 0.64
t-stat  0.43 -0.05 -0.46

FED coef  0.22 -0.19 -0.02 0.48
t-stat  1.47 -0.83 -0.12

TERM coef  0.10 -0.39 0.26 0.64
t-stat  0.46 -1.11 110

Panel B:

MACRO; =a+ Y3 bCMCy_j + Yo, ¢iMACRO; i + &

CMCy_y CMCi_s CMC;_3 Joint S|g

LEI coef —0.02 0.02 0.01 0.62
t-stat —1.04 0.73 031

HELP coef -0.48 0.03 0.18 0.00**
t-stat -5.34** 0.42 177

CPI coef -0.01 0.00 -0.01 0.51
t-stat —0.84 -0.17 -1.14

IP coef -0.04 -0.06 0.00 0.03*
t-stat —1.77 —2.04* 0.03

FED coef 0.00 -0.03 -0.03 0.01**
t-stat  0.30 -1.37 —2.42*

TERM coef -0.02 0.02 -0.01 0.03*
t-stat —2.21* 1.42 —0.82

This table shows the results of the regressions between CMC and the macroeconomic variables. Panel A
lists the results from the regressions of C M C on lagged C' M C' and lagged macroeconomic variables, but
reports only the coefficients on lagged macro variables. Panel B lists the results from the regressions of
macrovariables on lagged CMC and lagged macroeconomic variables, but reports only the coefficients on
lagged CMC. LEI isthe growth rate of the index of leading economic indicators, HELP is the growth rate in
theindex of Help Wanted Advertising in Newspapers, | Pisthe growth rate of industrial production, CPI isthe
growth rate of Consumer Price Index, FED isthe federal discount rate and TERM istheyield spread between
10 year bond and 3 month T-bill. All growth rates (including inflation) are computed as the differencesin
logs of theindex at time ¢ and time ¢ — 12, where ¢ isin months. FED is the federal funds rate and TERM
is the yield spread between the 10 year government bond yield and the 3-month T-bill yield. All variables
are expressed as percentages. T-statistics are computed using Newey-West heteroskedastic-robust standard
errors with 3 lags, and are listed below each estimate. Joint Sig in Panel A denotes to the p-value of the joint
significance test on the coefficients on lagged macro variables. Joint Sig in Panel B denotesthe p-value of the
joint significance test on the coefficients of lagged CMC. T-statistics that are significant at the 5% (1%) level
are denoted with * (**). P-values of less than 5% (1%) are denoted with * (**). The sample period is from
January 1964 to December 1999.
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Table 9: Momentum, Downside Correlation and WML Returns
Panel A: Momentum Portfolio o’'s from the Fama-French M odel

K=3 K=6 K=9 K=12
1L 10w 1L 10W 1L 10W 1L 10W

Full Sample
a -054 044 -064 046 -067 047 -062 041
t-stat -274 261 -365 288 -447 312 -453 286

Conditioningon MKT < mean - 2SE
a -069 -136 -076 -132 -073 -116 -060 -1.35
t-stat -084 -152 -1.06 -166 -1.23 -164 -1.16 -241

Panel B: Decile p~ Portfolio o’s from the Fama-French M odel

Decile
1 2 3 4 5 6 7 8 9 10

Full Sample
a -0.37 -030 -031 -024 -019 -016 -015 -0.10 0.02 0.16
t-stat -3.35 -313 -356 -256 -235 -207 -212 -147 033 280

Conditioningon MKT < mean - 2SE
1o 233 179 119 102 015 -003 089 063 012 -039
t-stat 210 184 098 074 014 -004 134 122 036 -0.73

Panel C: Regression of WML onto Various Factors

Constant MKT  SMB HML CMC Adj R?

Model A:  coef 0.72 0.05 0.68 0.12
t-stat  4.19** 0.73 4.82**
Model B: coef 1.05 0.02 -041 -0.26 0.10

t-stat 6.25** 033 -3.20* -2.19*

Model C:  coef  0.86 0.04 -0.19 -0.15 047 0.13
t-stat  4.87** 055 -1.18 -1.27 2.81**

In Panels A and B, the table reports o’s from a Fama-French (1993) model for the 40 momentum portfolios
and the decile p— portfolios. The 40 momentum portfolios are formed using a J=6 month formation period,

with holding periods of K =3, 6, 9 or 12 months, with 10 decileswithinin each K. The decile p ~ portfolios
are the same portfoliosin Table (2). Alpha's from two samples are reported: over the full sample, and over

a sampl e conditioned on the market return (MKT) being below two standard deviations from its mean. The
full sample period is from January 1964 to December 1999. There are 41 observations where the market is

less than two standard deviations from its unconditional mean, where both the mean and standard deviation

are computed using the full sample. In Panel C, the table reports the time-series regression of the momentum

factor, WML, onto various other factors. MKT is the market, SMB and HML are Fama-French (1993)

factors, CMC isthe downsiderisk factor, and SKS is the Harvey-Siddique (2000) skewness factor. The t-stat

is computed using Newey-West (1987) heteroskedastic-robust standard errors with 3 lags. In Panel C, t-

statistics that are significant at the 5% (1%) level are denoted with * (**). The sample period is from January

1964 to December 1999.
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Table 10: Fama-MacBeth Regression Tests of the Momentum Portfolios
Factor Premiums A

Ao MKT SvB HML CMC WML Joint Sig

Model A: Fama-French Model

Premium()\) -049 204 -050 -0.98 p-val=0.07
t-stat 045 166 -165 -217*

Model B: Usshng MKT and CMC

Premium (\) -0.66 1.98 0.73 p-val=0.03*
t-stat -0.92 2.32* 2.38*

Model C: Fama-French Factorsand CMC

Premium(\) -065 173 -011 -052 102 p-val=0.00 **
t-stat 057 122 025 081 243"

Model D: Fama-French Factors, CMC and WML

Premium(\) -024 045 050 0.64 098 0.84 p-val=0.01**
t-stat 019 029 104 108 201 274

This table shows the results from the Fama-MacBeth (1973) regression tests on the 40 momentum portfolios
sorted by past 6 months returns. MK T, SMB and HML are Fama and French (1993)’sthree factorsand CMC
is the downside risk factor. WML is return on the zero-cost strategy going long past winners and shorting
past losers (constructed following Carhart (1997)). In the first stage we estimate the factor loadings over the
whole sample. The factor premia, A, are estimated in the second-stage cross-sectional regressions. The last
column of the table reports p-values from y 2 tests on the joint significance of the betas of each model. All
statistics are computed using Shanken (1992) standard errors. T-statistics that are significant at the 5% (1%)
level are denoted with * (**). The sample period is from January 1964 to December 1999.
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Figure 1. Downside and Upside Moments of Industry Portfolios
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The left column of the figure shows upside and downside betasin Panel A, upside and downside correlations
in Panel C and the ratio of upside and downside total portfolio volatility to market volatility in Panel E.

All of these are averaged across the 48 Fama and French (1997) industry portfolios. The graph in Panel A

is constructed as follows (Panels C and E are similar). The figure displays the average 8~ (#) across the
portfolios, where 6 is = standard deviations below the unconditional mean of the market. For example, at

x = —1, thefigure plotsthe averageindustry 3~ (0 = M KT — SEnkT), where M KT isthe unconditional
mean of the excess market return and S E ;7 1S the unconditional volatility of the excess market return. At
xz = 0, the figure plots the average 3~ (6 = M KT). Similarly, on the RHS of the z-axis for z > 0, the
figure displays the average 31 (6), for 6 representing = standard deviations above the mean of the market.

There are two points plotted at « = 0 representing the average 3~ (# = MKT) = §~ and the average
BT(@ = MKT) = 3. The 95% standard error bounds shown in dotted lines in Panels A, C, and E are
produced by bootstrap with 10,000 simulations. Panels B, D and F, in the right column of the figure, report

theratio of 3~ /87, (Panel B), theratioof p~/p™ (Panel D) and theratio of k£~ /k™ (Panel E) for each of the
48 industry portfolios (numbered 1-48 on the z-axis). All of these ratios are computed at the conditioning

level of # = M KT. Datais sampled monthly from Jan 1964 - Dec 1999.
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Figure 2: Alphas and Factor Loadings of the Downside Correlation Portfolios
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Thetop panel shows portfolio aphasfrom the 20 p — portfolios. These portfolios are formed in the following
fashion. First, stocks are sorted into two groups according to their past beta over the past year, using daily
returns (high betaversuslow beta). Each group consists of one half of all firms. Then, within each betagroup,
we rank stocks based on their p—, also computed using daily data over the past year into decile portfolios.
This gives us 2 (5) x 10 (p—) portfolios, making a total of twenty downside correlation portfolios. The
portfolios 1-10 (11-20) are from the low (high) beta group. The a’s are from a model of the Fama-French
(1993) factors, augmented with Carhart (1997)’s WML momentum factor and are shown over three periods.
over the full sample, from Jan 1964 - Dec 1981, and from Jan 1982 - Dec 1999. The bottom panel shows the
portfolio factor loadings on the MKT, SMB, HML and WML factors over the full sample.
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Figure 3. Average Return, 3, p— of Momentum Portfolios
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These plots show the average monthly percentage returns, 8 and p — of the Jegadeesh and Titman (1993)
momentum portfolios. J refers to formation period and K refers to holding periods. For each month, we
sort all NY SE and AMEX stocks into decile portfolios based on their returns over the past /=6 months. We
consider holding periods over the next 3, 6, 9 and 12 months. This procedure yields 4 strategies and 40
portfoliosin total. The sample period is from January 1964 to December 1999.
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Figure 4: Loadings of Momentum Portfolios on Factors
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These plots show the loadings of the Jegadeesh and Titman (1993) momentum portfolios on MKT, SMB,
HML and CMC. Factor loadings are estimated in the first step of the Fama-MacBeth (1973) procedure
(equation (B-2)). J refersto formation period and K refersto holding periods. For each month, we sort all
NY SE and AMEX stocks into decile portfolios based on their returns over the past /=6 months. We consider
holding periods over the next 3, 6, 9 and 12 months. This procedure yields 4 strategies and 40 portfoliosin
total. MKT, SMB and HML are Famaand French (1993)'sthree factorsand CMC isthe downside correlation
risk factor. The sample period is from January 1964 to December 1999.
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Figure 5: Pricing Errors of GMM Estimation (HJ method)

Portfolio
Market and CMC

10 20 30 40

Portfolio
Carhart Four Factor Model

Portfolio

Pricing Error

Pricing Error

Pricing Error

Fama—French Model

Portfolio
Fama—French Model and CMC

Portfolio
Carhart Model and CMC

Portfolio

These plots show the pricing errors of various models considered in Section 5.2. Each star in the graph
represents one of the 40 momentum portfolios with J = 6 or the risk-free asset. The first ten portfolios
correspond to the K = 3 month holding period, the second ten to the K = 6 month holding period, the third
ten to the K = 9 month holding period, and finally the fourth ten to the K’ = 12 holding period. The 41st
asset istherisk-free asset. The graphs show the average pricing errors with asterixes, with two standard error
bands in solid lines. The units on the y-axis are in percentage terms. Pricing errors are estimated following
computation of the Hansen-Jagannathan (1997) distance. The Carhart (1997) four-factor model consists of
MKT, SMB, HML and WML factors.
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