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1. Basic Definition of a Factor Model

Factor models of security returns decompose the random return on each of a cross-section of assets
into factor-related and asset-specific returns. Letting r denote the vector of random returns on n

assets, and assuming k factors, a factor decomposition has the form:
r=a+Bf+e (1)

where B is a nxk-matrix of factor betas, f is a random k—vector of factor returns, and e is an
n—vector of asset-specific returns. The n—vector of coefficients a is set so that Ele] = 0. By defining
B as the least squares projection B = cov(r, f)C;l, it follows that cov(f,e) = 0F*".

The factor decomposition (1) puts no empirical restrictions on returns beyond requiring that the
means and variances of r and f exist. So in this sense it is empty of empirical content. To add
empirical structure it is commonly assumed that the asset-specific returns € are cross-sectionally
uncorrelated, Elee’] = D where D is a diagonal matrix. This implies that the covariance matrix of

returns can be written as the sum of a matrix of rank k£ and a diagonal matrix:
cov(r,r") = Beov(f, f)B' + D. (2)

This is called a strict factor model. Without loss of generality one can assume that cov(f, f') has
rank k, since otherwise one of the factors can be removed (giving a k — 1 factor model) without

affecting the fit of the model.
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An important (and often troublesome) feature of factor models is their rotational indeterminacy.
Let L denote any nonsingular kxk-matrix and consider the set of factors f* = Lf and factor betas
B* = L7'B. Note that f*, B* can be used in place of f, B since only their matrix product affects
returns and the linear "rotation" L disappears from this product. This means that factors f and
associated factor betas B are only defined up to a kzk linear transformation. In order to empirically
identify the factor model one can set the covariance matrix of the factors equal to an identity matrix,

E[f f'] = I, without loss of generality.

2. Approximate Factor Models

Security market returns have strong comovements, but the assumption that returns obey a strict
factor model is easily rejected. In practice, for any reasonable value of k there will at least some
discernible positive correlations between the asset—specific returns of at least some assets. An approz-
imate factor model (originally developed by Chamberlain and Rothschild (1983)) weakens the strict
factor model of exactly zero correlations between all asset specific returns. Instead it assumes that
the there is a large number of assets n and the proportion of the correlations which are nonnegligibly
different from zero is close to zero. This condition is formalized as a bound on the eigenvalues of the

asset-specific return covariance matrix:

lim max eigval|cov(e,€’)] < c
n—oo

for some fixed ¢ < oo. Crucially, this condition implies that asset-specific returns are diversifiable

risk in the sense that any well-spread portfolio w will have asset-specific variance near zero:

lim w’cov(e, e )w = 0 for any w such that lim w'w = 0. (3)
n—oo n—oo

Note that an approximate factor model uses a "large n" modeling approach: the restrictions on the
covariance matrix need only hold approximately as the number of assets n grows large.
Letting V' = cov(e, ') which is no longer diagonal, and choosing the rotation so that cov(f, f') =1

we can write the covariance matrix of returns as:
cov(r,r’) = BB + V.

In addition to (3) it is appropriate to impose the condition that lim min BB’ = oo. This ensures

n—oo

that each of the k factors represents a pervasive source of risk in the cross-section of returns.



3. Statistical Factor Models

Financial researchers differentiate between characteristic-based, macroeconomic, and statistical fac-
tor models. In a characteristic-based model the factor betas of asset are tied to observable character-
istics of the securities, such as company size or the book-to-price ratio, or the industry categories to
which each security belongs. In macroeconomic factor models, the factors are linked to the innova-
tions in observable economic time series such as inflation and unemployment. In a statistical factor
model, neither factors nor betas are tied to any external data sources and the model is identified
from the covariances of asset returns alone.

Recall the convenient rotation E[f f'] = I which allows us to write the strict factor model (1) as:
cov(r,r") = BB' + D. (4)

Assuming that the cross-section of return is multivariate normal and i.i.d. through time, the sample
covariance matrix cov(r,r’) has a Wishart distribution. Imposing the strict factor model assumption
(4) on the true covariance matrix it is possible to estimate the set of parameters B, D by maximum
likelihood. This maximum likelihood problem requires high-dimensional nonlinear maximization:
there are nK + n parameters to estimate in B, D. There is also an inequality constraint on the max-
imization problem: the diagonal elements of D must be nonnegative, since they represent variances.
The solution to the maximum likelihood problem yields estimates of B and D which correspond to
the systematic and unsystematic risk measures. It is often the case that estimates of the time series
of factors, f, are of interest. These are called factor scores in the statistical literature. They can be
obtained through several approaches, including cross-sectional GLS regressions of r on B

A~ A~
3

fi=(BD'B)"'BD 1.

See Basilevsky (1994) for a review of the various iterative algorithms which can be used to numerically
solve the maximum likelihood factor analysis problem and estimate the factor scores. See Roll and
Ross (1980) for an empirical application to equity returns data.

The first k eigenvectors of the return covariance matrix scaled by the square roots of their
respective eigenvalues are called the k principal components of the covariance matrix. A restrictive
version of the strict factor model is the scalar factor model, given by (2) plus the scalar matrix
condition D = ¢2I. Under the assumption of a scalar factor model, the maximum likelihood problem

simplifies, and the principal components are the maximum likelihood estimates of the factor beta



matrix B (the arbitrary choice of rotation is slightly different in this case). This provides a quick and

simple alternative to maximum likelihood factor analysis, under the restrictive assumption D = o21.

A. Asymptotic Principal Components

The maximum likelihood method of factor model estimation relies on a strict factor model assumption
and a time-series sample which is large relative to the number of assets in the cross-section. Standard
principal components requires the even stronger condition of a scalar factor model. Neither method
is well-configured for asset returns where the cross-section tends to be very large. Connor and
Korajczyk (1986) develop an alternative method called asymptotic principal components, building on
the approximate factor model theory of Chamberlain and Rothschild (1983). Connor and Korajczyk
analyze the eigenvector decomposition of the T'zT" cross product matrix of returns rather than of the
nxn covariance matrix of returns. They show that given a large cross-section, the first k eigenvectors
of this cross-product matrix provide consistent estimates of the kxT matrix of factor returns. Connor
and Korajczyk (1988) extend the procedure to account for cross-sectional heteroskedasticity and
Jones (2001) extends the procedure to account for time-series heteroskedasticity. Stock and Watson
(2002) extend the theory to allow both large time series and large cross-sectional samples, time
varying factor betas, and provide a quasi-maximum likelihood interpretation of the technique. Bai
(2003) analyzes the large-sample distributions of the factor returns and factor beta matrix estimates

in a generalized version of this approach.

4. Macroeconomic Factor Models

The rotational indeterminacy in statistical factor models is unsatisfying for the application of factor
models to many research problems. Statistical factor models do not allow the analyst to assign
meaningful labels to the factors and betas; one can identify the k pervasive risks in the cross-section
of returns, but not what these risks represent in terms of economic and financial theory.

One approach to making the factor decomposition more interpretable is to rotate the statistical
factors so that the rotated factors are maximally correlated with pre-specified macroeconomic factors.
If f; is a k-vector of statistical factors and m; is a k-vector of macroeconomic innovations we can

regress the macroeconomic factors on the statistical factors

my = ILf; + ;.



As long as II has rank k, the span of the rotated factors, I1f;, is the span of the original statistical
factors, f;. However the rotated factors can now be interpreted as the return factors that are
correlated with the specified macroeconomic series. With this rotation the new factors are no longer
orthogonal, in general. This approach is described in Connor and Korajczyk (1991).

Alternatively, one can work with the pre-specified macroeconomic series directly. Chan, Chen,
and Hsieh (1985) and Chen, Roll and Ross (1986) develop a macroeconomic factor model in which the
factor innovations f are observed directly (using innovations in economic time series) and the factor
betas are estimated via time-series regression of each asset’s return on the time-series of factors. They
begin with the standard description of the current price of each asset, p;:, as the present discounted
value of its expected cash flows:

o 2. Elci]
Pe= 2 T puy

where p,, is the discount rate at time t for expected cash flows at time ¢ + s. Chen, Roll and Ross
note that the common factors in returns must be variables which cause pervasive shocks to expected
cash flows Flc;] and/or risk-adjusted discount rates pg. They propose inflation, interest rate, and
business-cycle related variates to capture these common factors. Shanken and Weinstein (2006) find
that empirically the model lacks robustness in that small changes in the included factors or the
sample period have large effects on the estimates. Connor (1995) argues that although macroeco-
nomic factors models are theoretically attractive, since they provide a deeper explanation for return
comovement than statistical factor models, their empirical fit is substantially weaker than statistical
and characteristic-based models. Vassalou (2003) argues on the other hand that the ability of the
Fama-French model (see below) to explain the cross-section of mean returns can be attributed to the

fact that Fama-French factors provide good proxies for macroeconomic factors.

5. Characteristic-based Factor Models

A surprisingly powerful method for factor modeling of security returns is the characteristic-based
factor model. Rosenberg (1974) was the first to suggest that suitably scaled versions of standard
accounting ratios (book-to-price ratio, market value of equity) could serve as factor betas. Using
these predefined betas, he estimates the factor realizations f; by cross-sectional regression of time-t
asset returns on the pre-defined matrix of betas.

In a series of very influential papers, Fama and French (1992, 1993, 1996) propose a two-stage

method for estimating characteristic-based factor models. In the first stage they sort assets into



fractile portfolios based on book-to-price and market value characteristics. They use the differences
between returns on the top and bottom fractile portfolios as proxies for the factor returns. They
also include a market factor proxied by the return on a capitalization-weighted market index. In the
second stage, the factor betas of portfolios and/or assets are estimated by time-series regression of
asset returns on the derived factors. Carhart (1997) and Jagadeesh and Titman (1993, 2001) show
that the addition of a momentum factor (proxied by high-twelve-month return minus low twelve-
month-return) adds explanatory power to the Fama-French three-factor model, both in terms of
explaining comovements and mean returns. Ang, Hodrick, Xing and Zhang (2006a,b) and Goyal and
Santa-Clara (2003) also find evidence for a own-volatility-related factor, both for explaining return

comovements and mean returns.

A. Industry-Country Components Models

One of the most empirically powerful factor decompositions for equity returns is an error-components
model using industry affiliations. This involves setting the factor beta matrix equal to zero/one
dummies, with row i containing a one in the j** column if and only if firm i belongs to industry j.
This is the simplest type of characteristic-based factor model of equity returns.

The first statistical factor is dominant in equity returns, accounting for 80-90% of the explanatory
power in a multi-factor model. The standard specification of a error-components model does not
isolate the "first" factor since its influence is spread across the factors. Heston and Rouwenhorst
(1994) describe an alternative specification in which this factor is separated from the k industry
factors. They add a constant to the model, so that the expanded set of factors k + 1 is not directly
identified (this lack of identification is sometimes called the "dummy variable trap," referring to a
model that includes a full set of zero-one dummies plus a constant). Then, Heston and Rouwenhorst,
impose an adding-up restriction on the estimated k + 1 factors: the set of industry factors must
sum to zero. This adding-up restriction on the factors restores statistical identification to the model,
requiring constrained least squared in place of standard least squares estimation. It also provides
a useful interpretation of the estimated factors: the factor associated with the constant term is
the "market-wide" or "first" factor, and the factors associated with the industry dummies are the
extra-market industry factors. This specification has been widely adopted in the research literature.

Heston and Rouwenhorst’s adding-up condition is particularly useful in a multi-country context.
It allows one to include an overlapping set of country and industry dummies without encountering the

problem of the dummy variable trap. Including a constant, an international industry-country factor



model must impose adding-up conditions both on the estimated industry factors and on the estimated
country factors. This type of country-industry specification is useful for example in measuring the
relative contribution of cross-border and national influences to return comovements, see, for example,

Hopkins and Miller (2001).

6. Determining the Number of Factors

In the case of maximum likelihood estimation of a strict factor models, it is possible to test for
the correct number of factors by comparing the likelihood of the model with k£ factors to that of
a k + 1 factor model. Under the standard assumptions, for large time-series samples the ratio of
the log likelihoods has an approximate chi-squared distribution. There are drawbacks to this test
in the context of asset returns data and its performance has been problematic, see, e.g., Dhrymes,
Friend and Gultekin (1984), Conway and Reinganum (1988), and Shanken (1987) who all find the
test unreliable. The test may rely too strongly on the assumption of a strict factor model (an exactly
diagonal covariance matrix of asset-specific returns) which is at best a convenient fiction in the case of
asset returns. Also, it tests the hypothesis that the correct number of factors has been pre-specified,
rather than optimally determining the best number of factors to use.

Connor and Korajczyk (1993) derive a test for the number of factors which is robust to having
an approximate, rather than strict factor model. It is based on the decline in average idiosyncratic
variance as additional factors are added.

Bai and Ng (2002) take a different approach to the factor-number decision. They view the choice
of the number of factors as a model selection problem, and build on the Akaike and BIC information
criteria-based tests for model selection. Bai and Ng compute the average asset-specific variance (both

across time and across securities) in a model with & factors:

The Bai-Ng procedure involves choosing k£ to minimize a degrees-of-freedom adjusted variant of
average asset-specific variance:

k* = argmino? + kg(n, T). (5)

where the penalty function g(n,T’) serves to compensate for the lost degrees of freedom when esti-

mating the model with more factors.



7. Factor Beta Pricing Theory

A central concern in asset pricing theory is the determination of asset risk premium and their
connection to sources of pervasive risk. Factor models have been central to this research area. In a
factor beta pricing model the expected return of each asset equals the risk-free return plus a linear
combination of the factor betas of the assets, with the linear weights (factor risk premia) constant
across securities:

E[r] =1"ro+ Bm

where 7y is the risk-free return and 7 is a k—vector of factor risk premia. Important special cases
include the Capital Asset Pricing Model (Sharpe (1963), Treynor (1961, 1999), the Arbitrage Pricing
Theory (Ross (1976)), the Fama-French model (Fama and French (1993,1996)), and Merton’s (1973)
Intertemporal Capital Asset Pricing Model.
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