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Abstract 

 

This paper proposes a GARCH-type model allowing for time-varying volatility, 

skewness and kurtosis. The model is estimated assuming a Gram-Charlier series 

expansion of the normal density function for the error term, which is easier to estimate 

than the non-central t distribution proposed by Harvey and Siddique (1999). Moreover, 

this approach accounts for time-varying skewness and kurtosis while the approach by 

Harvey and Siddique (1999) only accounts for nonnormal skewness. We apply this 

method to daily returns of a variety of stock indices and exchange rates. Our results 

indicate a significant presence of conditional skewness and kurtosis. It is also found that 

specifications allowing for time-varying skewness and kurtosis outperform 

specifications with constant third and fourth moments.  
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AUTORREGRESIVE CONDITIONAL VOLATILITY, SKEWNESS 
AND KURTOSIS 

 
 
1. Introduction 

There have been many papers studying the departures from normality of asset return 

distributions. It is well known that stock return distributions exhibit negative skewness and 

excess kurtosis (see, for example, Harvey and Siddique, 1999; Peiró, 1999; and Premaratne 

and Bera, 2001). Specifically, excess kurtosis (the fourth moment of the distribution) makes 

extreme observations more likely than in the normal case, which means that the market 

gives higher probability to extreme observations than in normal distribution. However, the 

presence of negative skewness (the third moment of the distribution) has the effect of 

accentuating the left-hand side of the distribution. That is, the market gives higher 

probability to decreases than increases in asset pricing.  

 

These issues have been widely analyzed in option pricing literature. For example, as 

explained by Das and Sundaram (1999), the well known volatility smile and smirk effects 

are closely related to the presence of excess kurtosis and negative skewness in the 

underlying asset returns distribution. 

 

The generalized autorregresive conditional heteroscedasticity (GARCH) models, 

introduced by Engle (1982) and Bollerslev (1986), allow for time-varying volatility (but not 

for time-varying skewness or kurtosis). Harvey and Siddique (1999) present a way to 

jointly estimate time-varying conditional variance and skewness under a non-central t 

distribution for the error term in the mean equation. Their methodology is applied to several 

series of stock index returns, and it is found that autorregresive conditional skewness is 

significant and that the inclusion of skewness affects the persistence in variance. It is 

important to point out that the paper by Harvey and Siddique (1999) allows for time-

varying skewness but still assumes constant kurtosis.  

 

Premaratne and Bera (2001) have suggested capturing asymmetry and excess kurtosis with 

the Pearson type IV distribution, which has three parameters that can be interpreted as 
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volatility, skewness and kurtosis. This is an approximation to the non-central t distribution 

proposed by Pearson and Merrington (1958). However, these authors use time-varying 

conditional mean and variance, but maintain constant skewness and kurtosis over time. 

Similarly, Jondeau and Rockinger (2000) employ a conditional generalized Student-t 

distribution to capture conditional skewness and kurtosis by imposing a time-varying 

structure for the two parameters which control the probability mass in the assumed 

distribution1.  However, these parameters do not follow a GARCH structure for either 

skewness or kurtosis. 

 

The purpose of this research is to extend the work by Harvey and Siddique (1999) 

assuming a distribution for the error term in the mean equation that accounts for nonnormal 

skewness and kurtosis. In particular, we jointly estimate time-varying volatility, skewness 

and kurtosis using a Gram-Charlier series expansion of the normal density function, along 

the lines suggested by Gallant and Tauchen (1989). 

 

It is also worth noting that, apart from the fact that our approach accounts for time-varying 

kurtosis while the one by Harvey and Siddique (1999) does not, our likelihood function, 

based on a series expansion of the normal density function, is easier to estimate than the 

likelihood function based on the non-central t distribution employed by them.  

 

The joint estimation of time-varying volatility, skewness and kurtosis can be useful in 

testing option pricing models that explicitly introduce the third and fourth moments of the 

underlying asset return distribution along the lines suggested by Heston (1993), Bates 

(1996), and Heston and Nandi (2000). It may also be useful in analyzing the information 

content of option-implied coefficients of skewness and kurtosis, extending the papers by 

Day and Lewis (1992), Lamoureux and Lastrapes (1993) and Amin and Ng (1997), among 

others. 

 

The method proposed in this paper is applied to two different data sets. Firstly, our model is 

estimated using daily returns of four exchange rates series: British Pound/USD, Japanese 

                                                           
1 This generalized Student-t distribution is based on Hansen´s (1994) work. 
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Yen/USD, German Mark/USD and Swiss Franc/USD. Secondly we apply the method to 

five stock indices: S&P500 and NASDAQ100 (U.S.), DAX30 (Germany), IBEX35 (Spain), 

and the MEXBOL emerging market index (Mexico). These indices reflect the movements 

in their respective national financial markets and are used as underlying assets in several 

options and futures contracts.  

 

Our results indicate significant presence of conditional skewness and kurtosis. It is also 

found that specifications allowing for time-varying skewness and kurtosis outperform 

specifications with constant third and fourth moments. 

 

The rest of the paper is organized as follows. In Section 2 we present our GARCH-type 

model for estimating time-varying variance, skewness and kurtosis jointly. Section 3 

presents the data and the empirical results regarding the estimation of the model. Section 4 

compares the models allowing for time-varying skewness and kurtosis and the standard 

models with constant third and fourth moments. Section 5 concludes with a summary and 

discussion. 

 

 

2. A model for conditional volatility, skewness and kurtosis 

In this section we extend the model for conditional variance and skewness proposed by 

Harvey and Siddique (1999), to account for conditional kurtosis along the lines discussed in 

the introduction. 

 

Given a series of asset prices {S0, S1, …, ST}, we define continuously compounded returns 

for period t as ( )[ ]1ttt SSln100r −= , t = 1, 2, …, T. Specifically, we present an asset return 

model containing either the GARCH(1,1) or NAGARCH (1,1) structure for conditional 

variance2 and also a GARCH (1,1) structure for both conditional skewness and kurtosis. 

Under the NAGARCH specification for conditional variance, the model is denoted as 

                                                           
2 Due to the well known leverage effect, we have chosen the NAGARCH (1,1) specification for the variance 
equation proposed by Engle and Ng (1993). 
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NAGARCHSK (and GARCHSK when conditional variance is driven by the GARCH (1,1) 

model3). It is given by:  
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where ( )•−1tE  denotes the conditional expectation on an information set till period 1t −  

denoted as 1tI − . We establish that ( )1 0t tE η− = , ( )2
1 1t tE η− = , ( )3

1t t tE sη− =  and 

( )4
1t t tE kη− =  where both ts  and tk  are driven by a GARCH (1,1) structure. Hence, ts  and 

tk  represent respectively skewness and kurtosis corresponding to the conditional 

distribution of the standardized residual 21
ttt h−= εη . 

  

Using a Gram-Charlier (GC) series expansion of the normal density function and truncating 

at the fourth moment4, we obtain the following density function for the standardized 

residuals tη  conditional on the information available in 1t −  : 

 

               

( ) ( ) ( ) ( )

( ) ( )

3 4 2
1

31 3 6 3
3! 4!

t t
t t t t t t t

t t

s kg Iη φ η η η η η

φ η ψ η

−

− = + − + − +  

=

                           (2) 

                  
                                                           
3 Specifically, in the equations below, we obtain the GARCHSK model for 3 0.β =  
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where ( )•φ  denotes the probability density function (henceforth pdf) corresponding to the 

standard normal distribution and ( )•Ψ  is the polynomial part of fourth order corresponding 

to the expression between brackets in (2). Note that the pdf defined in (2) is not really a 

density function because for some parameter values in (1) the density ( )•g  might be 

negative due to the component ( )•Ψ . Similarly, the integral of ( )•g  on ℜ  is not equal to 

one. We propose a true pdf, denoted as ( )•f , by transforming the density ( )•g  according to 

the method in Gallant and Tauchen (1989). Specifically, in order to obtain a well defined 

density everywhere we square the polynomial part ( )•Ψ , and to insure that the density 

integrates to one we divide by the integral of ( )•g  over ℜ 5. The resulting pdf written in 

abbreviated form is6: 

( ) ( ) ( )2
1 /t t t t tf Iη φ η ψ η− = Γ                                              (3) 

where  

( )22 3
1

3! 4!
tt

t

ks −
Γ = + +  

 

Therefore, after omitting unessential constants, the logarithm of the likelihood function for 

one observation corresponding to the conditional distribution 1/ 2
t t thε η= , whose pdf is 

( )1/ 2
1t t th f Iη−
− , is given by 

( )( ) ( )2 21 1ln ln ln
2 2t t t t tl h η ψ η= − − + − Γ                                   (4) 

 

As pointed out before, this likelihood function is clearly easier to estimate than the one 

based on a non-central t proposed by Harvey and Siddique (1999). In fact, the likelihood 

function in (4) is the same as in the standard normal case plus two adjustment terms 

accounting for time-varying skewness and kurtosis. Moreover, it is worth noting that the 

                                                                                                                                                                                 
4 See Jarrow and Rudd (1982) and also Corrado and Su (1996). 
5 See the appendix for proof that this nonnegative function is really a density function that integrates to one. 
6 An alternative approach under the Gram-Charlier framework is proposed by Jondeau and Rockinger (2001) 
who also show how constraints on the parameters defining skewness and kurtosis may be implemented to 
insure that the expansion defines a density. However, their approach does not seem to be feasible in both 
skewness and kurtosis within the conditional case. 
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density function based on a Gram-Charlier series expansion in equation (3) nests the 

normal density function (when st = 0 and kt = 3), while the noncentral t does not. Therefore, 

the restrictions imposed by the normal density function with respect to the more general 

density based on a Gram-Charlier series expansion can be easily tested. Finally, note that 

NAGARCHSK nests the GARCH (1,1) specification for the conditional variance when 

03 =β  in (1). We denote this nested case as the GARCHSK model. 

 

 

3. Empirical results 

3.1 Data and preliminary findings 

Our methodology is applied to two different data sets. The first one includes daily returns 

of five exchange rates series: British Pound/USD (GBP/USD), Japanese Yen/USD 

(JPY/USD), German Mark/USD (GEM/USD) and Swiss Franc/USD (CHF(USD). The 

second data set includes five stock indexes: S&P500 and NASDAQ100 (U.S.), DAX30 

(Germany), IBEX35 (Spain) and the emerging market index MEXBOL (Mexico).  

 

Our data set includes daily closing prices from January 2, 1990 to May 3, 2002 for the five 

exchange rate series, and from January 2, 1990 to July 17, 2003 for all stock index series 

except for MEXBOL, which includes data from January 2, 1995 to July 17, 2003. These 

closing prices are employed to calculate the corresponding continuously compounded daily 

returns, and Table 1 presents some descriptive statistics. Note that all series show 

leptokurtosis and there is also evidence of negative skewness except for GBP/USD and 

MEXBOL. It is also worth noting that the Mexican emerging market returns (MEXBOL) 

show the highest values of unconditional standard deviation, skewness and kurtosis. 

 

Before we estimate our NAGARCHSK model, we analyze the dynamic structure in the 

mean equation of (1). Specifically, the ARMA structure that maximizes the Schwarz 

Information Criterion (SIC) is selected. All the parameters implied in every model below 

are estimated by maximum likelihood assuming that the Gram-Charlier series expansion 

distribution given by (3) holds for the error term, and using Bollerslev and Wooldridge 
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(1992) robust standard errors7.  If we define the SIC as  ln(LML) – (q/2)ln(T), where q is the 

number of estimated parameters, T is the number of observations, and LML is the value of 

the log likelihood function using the q estimated parameters, then the selected model is the 

one with the highest SIC. According to SIC, MA(1) and AR(1) models without constant 

term yield very similar results8. However, the AR(1) has the advantage of being consistent 

with the nonsynchronous contracts of individual stocks which constitute the indices. 

Definitively, the dynamic conditional mean structure for every estimation is represented by 

an AR(1) model with no constant term.  

 

Table 2 presents the Ljung-Box statistics of order 20, denoted as LB(20), for εt
2, εt

3 and εt
4, 

where εt is the error term in the AR(1) model (with no constant term). The statistic for all 

moments is quite large (p-value = 0.000 in all cases). In other words, the significant serial 

correlation for εt
2, εt

3 and εt
4 indicates time-varying volatility, skewness and kurtosis, and it 

justifies the estimation of our GARCHSK or NAGARCHSK models defined in (1) with 

time-varying volatility, skewness and kurtosis.  

 

3.2 Model estimation with time-varying volatility, skewness and kurtosis 

Before presenting the estimation results obtained with both the exchange rates and the stock 

indexes series, we summarize the four nested models estimated as follows: 

 

Mean: t1t1t rr εα += −  (5-a)

Variance (GARCH): 
1t2

2
1t10t hh −− ++= βεββ  (5-b)

Variance (NAGARCH): ( ) 1t2
221

1t31t10t hhh −−− +++= ββεββ
(5-c)

Skewness: 
1t2

3
1t10t ss −− ++= γεγγ  (5-d)

Kurtosis: 
1t2

4
1t10t kk −− ++= δεδδ  (5-e)

 

 

                                                           
7 All maximum likelihood estimations in this paper are carried out using the CML subroutine of GAUSS. 
8 The constant terms were never significant in previous tests. 
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We estimate first two standard models for conditional variance: the GARCH (1,1) model 

(equations (5-a) and (5-b)), and the NAGARCH (1,1) model (equations (5-a) and (5-c)), 

where a normal distribution is assumed for the unconditional standardized error tη . We 

also estimate the generalizations of the standard GARCH and NAGARCH models, with 

time-varying skewness and kurtosis, named GARCHSK (equations  (5-a),  (5-b), (5-d) and 

(5-e)) and NAGARCHSK (equations (5-a), (5-c), (5-d) and (5-e)), assuming in both cases 

the distribution based on the Gram-Charlier series expansion given by equation (3). In the 

NAGARCH specification of the variance equation, a negative value of β3 implies a 

negative correlation between shocks and conditional variance.  

 

It should be noted that, given that the likelihood function is highly nonlinear, special care 

must be taken in selecting the starting values of the parameters. As usual in these cases, 

given that the four models are nested, the estimation is performed following several stages, 

and using the parameters estimated from the simpler models as starting values for more 

complex ones. 

 

The results for the exchange rate series are presented in Tables 3 and 4 for the GARCH and 

GARCHSK models respectively. It is found that for all exchange rates series the coefficient 

for asymmetric variance, 3β , is not significant, confirming that the leverage effect, 

commonly observed in other financial series, is not observed in the case of exchange rates. 

Therefore, for the exchange rate series only the results for symmetric variance models are 

presented. 

 

As expected, the results for all exchange rate series indicate a significant presence of 

conditional variance. Volatility is found to be persistent since the coefficient of lagged 

volatility is positive and significant, indicating that high conditional variance is followed by 

high conditional variance.  

 

Moreover, it is found that for the GBP/USD, DEM/USD and CHF/USD exchange rate 

series, days with high skewness are followed by days with high skewness, since the 

coefficient for lagged skewness ( 2γ ) is positive and significant, although its magnitude is 
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lower than in the variance case. Also, shocks to skewness are significant, although they are 

less relevant than its persistence. However, there seems to be no structure in skewness in 

the JPY/USD series, since neither 1γ nor 2γ is significant in this case. 

 

As with skewness, the results for the kurtosis equation indicate that days with high kurtosis 

are followed by days with high kurtosis, since the coefficient for lagged kurtosis ( 2δ ) is 

positive and significant. Its magnitude is greater than that of skewness but still lower than 

that of variance. As before, shocks to kurtosis are significant, except for the JPY/USD 

series. 

 

Finally, it is worth noting that  the value of the SIC, shown at the bottom of Tables 3 and 4, 

rises monotonically in all cases when we move from the simpler models to the more 

complicated ones, with the GARCHSK model showing the highest figure. Therefore, for 

the four exchange rates series analyzed, the GARCHSK specification seems to be the most 

appropriate one according to the SIC criterion. 

 

The results for the five stock indices are presented in Tables 5, 6, 7 and 8 for GARCH, 

NAGARCH, GARCHSK and NAGARCHSK models respectively. 

 

As expected, the results shown in Table 5 (GARCH models) indicate significant presence 

of conditional variance, with the two American indices (S&P500 and NASDAQ100) 

showing the highest degree of persistence. However, Table 6 (NAGARCH models) shows 

that contrary to the exchange rate case, the coefficient for asymmetric variance, 3β ,is 

negative and significant, confirming the presence of the leverage effect commonly observed 

in the markets. 

 

In regard to the skewness equation (Tables 7 and 8), as before, significant presence of 

conditional skewness is found, with at least one of the coefficients associated with shocks 

to skewness ( 1γ ) and to lagged skewness ( 2γ ) being significant, except for S&P500 stock 

index under the NAGARCHSK specification.  
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Similar results are obtained for the kurtosis equation with both GARCHSK and 

NAGARCSK specifications. The coefficient associated with shocks to kurtosis ( 1δ ) is 

significant in all cases, except for NASDAQ100 with the GARCHSK model and to some 

extent for IBEX35 with the NAGARCH model. Moreover, the coefficient associated with 

lagged kurtosis ( 2δ ) is significant in all cases except S&P500 with both specifications. 

Nevertheless, there is significant presence of conditional kurtosis for all stock indices, with 

both specifications, since at least one of the coefficients associated with shocks to kurtosis 

or to lagged kurtosis is found to be significant.  

 

As obtained with the exchange rate series,  the value of the SIC rises monotonically for all 

stock index series analyzed when we move from the simpler models to the more 

complicated ones, with the NAGARCHSK model showing the highest value. This seems to 

be the most appropriate specification. 

 

 

4.Comparing the models 

One way to start comparing the models is to compute a likelihood ratio test. It is easy to see 

that the density function based on a Gram-Charlier series expansion in equation (3) nests 

the normal density function when st = 0 and kt = 3 (alternatively when γ 1 = γ 2 = γ 3 = 0, δ 

1 =3 and δ 2 = δ 3 = 0). Therefore, the restrictions imposed by the normal density function 

with respect to the more general density based on a Gram-Charlier series expansion can be 

tested by means of a likelihood ratio test. The results are contained in Table 9. The value of 

the LR statistic is quite large in all cases, indicating the rejection of the null hypothesis that 

the true density is the restricted one, i.e. the normal density function. 

 

A second way of comparing the models is to compare the properties of the conditional 

variances obtained with each model. Figure 1 shows the behavior of conditional variance 

for one of the exchange rate series -GBP/USD- with both GARCH and GARCHSK models, 

and for one of the stock index series -S&P500- with both NAGARCH and NAGARCHSK 

specifications. It is clear that conditional variances obtained with models accounting for 

time-varying skewness and kurtosis are smoother than those obtained with standard 
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GARCH or NAGARCH models. This is confirmed by the results in Table 10, which shows 

some descriptive statistics for these conditional variances. In fact, conditional variances 

obtained with GARCHSK or NAGARCHSK models show less standard deviation, 

skewness and kurtosis than those obtained with the standard models. This fact was 

observed by Harvey and Siddique (1999) with their time-varying skewness (although 

constant-kurtosis) specification. 

 

The in-sample predictive ability of the different models is compared by means of two 

metrics. The variable predicted is the squared forecast error (εt
2) and the predictors are the 

conditional variances (ht) from, respectively, the standard GARCH or NAGARCH models 

and GARCHSK or NAGARCHSK models. The two metrics are: 

 

Median absolute error: |)(| 2
tt hmedMAE −= ε  

Median percentage absolute error: 






 −
= 2

2 ||

t

tt h
medMPAE

ε
ε

 

 

The metrics are based on the median since it is more robust than the mean in view of the 

high dispersal of the error series. The results are shown in Table 11. Models accounting for 

time-varying skewness and kurtosis outperform standard GARCH or NAGARCH models. 

They are the best performing models with the two metrics with all exchange rates and stock 

index series except for NASDAQ100 and IBEX35 with the median absolute error (although 

not with the median percentage absolute error).  

 

Furthermore, it is worth noting that the series that performs best, based on these metrics, is 

the MEXBOL stock index, which is the series with the highest values of unconditional 

standard deviation, skewness and kurtosis (Table 1). This result could suggest the potential 

application of our methodology to financial series from emerging economies, characterized 

by higher risk and more pronounced departures from normality. 
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5. Conclusions 

It is well known that the generalized autorregresive conditional heteroscedasticity 

(GARCH) models, introduced by Engle (1982) and Bollerslev (1986) allow for time-

varying volatility (but not for time-varying skewness or kurtosis). However, given the 

increasing attention that time-varying skewness and kurtosis have attracted in option 

pricing literature, it may be useful to analyze a model that jointly accounts for conditional 

second, third and fourth moments. 

 

Harvey and Siddique (1999) present a way of jointly estimating time-varying conditional 

variance and skewness, assuming a non-central t distribution for the error term in the mean 

equation. We propose a GARCH-type model allowing for time-varying volatility, skewness 

and kurtosis. The model is estimated assuming a Gram-Charlier series expansion of the 

normal density function, along the lines suggested by Gallant and Tauchen (1989), for the 

error term in the mean equation. This distribution is easier to estimate than the non-central t 

distribution proposed by Harvey and Siddique (1999). Moreover, our approach accounts for  

time-varying skewness and kurtosis while the one by Harvey and Siddique (1999) only 

accounts for time-varying skewness.  

 

Firstly, our model is estimated using daily returns of four exchange rate series, five stock 

indices and the emerging market index MEXBOL (Mexico). Our results indicate significant 

presence of conditional skewness and kurtosis. Moreover, it is found that specifications 

allowing for time-varying skewness and kurtosis outperform specifications with constant 

third and fourth moments. 

 

Finally, it is important to point out two main implications of our GARCHSK and 

NAGARCHSK model. First, they can be useful in estimating future coefficients of 

volatility, skewness and kurtosis, which are unknown parameters in option pricing models 

that account for nonnormal skewness and kurtosis. For example, estimates of volatility, 

skewness and kurtosis from the NAGARCHSK model, based on historical series of returns, 

could be compared with option implied coefficients in terms of their out of sample option 

pricing performance. Secondly, our models could be useful in testing the information 
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content of option implied coefficients of volatility, skewness and kurtosis. This could be 

done by including option implied coefficients as exogenous terms in the equations of 

volatility, skewness and kurtosis, extending the papers by Day and Lewis (1992), 

Lamoureux and Lastrapes (1993) and Amin and Ng (1997), among others. 
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APPENDIX 
 
Here we show that the nonnegative function ( )1t tf Iη −  in (3) is really a density function,  

that is it integrates to one. We can rewrite ( )tψ η  in (2) as: 
  

( ) ( ) ( )3 4
31

3! 4!
t t

t t t
s kH Hψ η η η−

= + +  

 
where  ( ){ } Ν∈ii xH  represents the Hermite polynomials such that   ( ) ( )0 11,H x H x x= =   
and for 2i ≥  they hold  the following recurrence relation: 
 

( ) ( ) ( )( )1 21 /i i iH x xH x i H x i− −= − −  

 
It is verified that ( ){ } Ν∈ii xH  is an orthonormal basis satisfying that: 
 
 

( ) ( ) 1,iH x x dx iφ
∞

−∞
= ∀∫                                                    (A-1) 

 

( ) ( ) ( ) 0,i jH x H x x dx i jφ
∞

−∞
= ∀ ≠∫                                   (A-2) 

 
 
where ( )•φ  denotes the N(0,1) density function. If we integrate the conditional density 
function in (3), given conditions (A-1) and (A-2): 
 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2

3 4

22
2 2
3 4

22

31/ 1
3! 4!

3
1/

3! 4!

3
1/ 1

3! 4!

1.

t t
t t t t t

tt
t t t t t t t t t

tt
t

s kH H d

ksd H d H d

ks

φ η η η η

φ η η η φ η η η φ η η

∞

−∞

∞ ∞ ∞

−∞ −∞ −∞

− Γ + +  

 −
= Γ + + 

  

 −
= Γ + + 

  

=

∫

∫ ∫ ∫
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 FIGURE 1 
ESTIMATED CONDITIONAL VARIANCES WITH NAGARCH AND NAGARCHSK 

MODELS 
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TABLE 1 

DESCRIPTIVE STATISTICS FOR DAILY RETURNS 
 
 

PANEL A: EXCHANGE RATES 

STATISTIC GBP/USD JPY/USD DEM/USD CHF/USD 

Simple size 3126 3126 3126 3126 

Mean 0.0030 -0.0045 0.0072 0.0003 

Median 0.0000 0.0120 0.0207 0.0217 

Maximum 3.2860 3.3004 3.1203 3.0747 

Minimum -2.8506 -5.7093 -2.9497 -3.7243 

Stand. Dev. 0.5731 0.7192 0.6621 0.7197 

Skewness 0.2334 -0.5794 -0.0594 -0.2000 

Kurtosis 5.7502 7.3298 4.6546 4.5432 

Jarque-Bera 
(p-value) 

1013.565 
(0.0000) 

2616.775 
(0.0000) 

358.4119 
(0.0000) 

331.0593 
(0.000) 

 
 

PANEL B: STOCK INDEXES 

STATISTIC S&P500 NASDAQ DAX30 IBEX35 MEXBOL 

Simple size 3415 3416 3407 3390 2137 

Mean 0.0294 0.0383 0.0178 0.0246 0.0511 

Median 0.0315 0.1217 0.0641 0.0508 0.0099 

Maximum 5.5732 13.2546 7.5527 6.8372 12.1536 

Minimum -7.1127 -10.1684 -8.8747 -8.8758 -14.3139 

Stand. Dev. 1.0611 1.6117 1.5056 1.3876 1.8086 

Skewness -0.0995 -0.0099 -0.1944 -0.1854 0.0712 

Kurtosis 6.5658 8.3740 6.3210 5.9169 8.6060 

Jarque-Bera 
(p-value) 

1814.880 
(0.0000) 

4110.566 
(0.0000) 

1587.134 
(0.0000) 

1221.204 
(0.0000) 

2800.124 
(0.0000) 
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TABLE 2 

LJUNG-BOX STATISTICS WITH ORDER 20 OF RESIDUALS FROM AR(1) MODEL  

 
The table presents the Ljung-Box statistic (asymptotic p-value in parenthesis) with order 20, i.e. LB(20), of 
εt

2, εt
3 and εt

4, where εt is the error term from an AR(1) model for daily returns (in bold are significantly 
different from zero Ljung-Box statistics) 

 

 

SERIES LB(20) - εt
2 LB(20) - εt

3 LB(20) - εt
4 

GBP/USD 825.43 
(0.000) 

134.37 
(0.000) 

332.34 
(0.000) 

JPY/USD 567.01 
(0.000) 

208.55 
(0.000) 

196.37 
(0.000) 

DEM/USD 407.25 
(0.000) 

70.501 
(0.000) 

187.38 
(0.000) 

CHF/USD 317.69 
(0.000) 

133.75 
(0.000) 

365.89 
(0.000) 

S&P500 131.81 
(0.000) 

120.91 
(0.000) 

139.79 
(0.000) 

NASDAQ 3152.1 
(0.000) 

252.04 
(0.000) 

315.26 
(0.000) 

DAX30 2919.1 
(0.000) 

72.889 
(0.000) 

489.37 
(0.000) 

IBEX35 1719.1 
(0.000) 

131.16 
(0.000) 

271.49 
(0.000) 

MEXBOL 488.67 
(0.000) 

238.18 
(0.000) 

283.82 
(0.000) 
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TABLE 3 

GARCH MODELS – EXCHANGE RATES 

 
 

The reported coefficients shown in each row of the table are ML estimates of the standard GARCH model:  
 

t1t1t εrαr += −  

1t2
2

1t10t hβεββh −− ++=  
 
for percentage daily returns of British Pound/American Dollar (GBP/USD), Japanese Yen/US Dollar 
(JPY/USD), German Mark/US Dollar (DEM/USD) and Swiss Franc/US Dollar (CHF/USD) exchange rates, 
from January 1990 to March 2002. ht = var(rt | rt-1, rt-2, …), εt | εt-1, εt-2, … follows a N(0,ht) distribution. All 
models have been estimated by ML using the Berndt-Hall-Hall-Hausman algorithm (quasi-maximum 
likelihood p-values in parenthesis; in bold are significantly different from zero coefficients at 5%). 
 

 
 

 Parameter GBP/USD JPY/USD DEM/USD CHF/USD 
Mean 

equation 
α1 0.0432 

(0.0263) 
0.0175 

(0.3826) 
0.0364 

(0.0573) 
0.0304 

(0.1154) 

Variance 
equation 

β0 
 

β1 
 

β2 
 

0.0031 
(0.0459) 

0.0435 
(0.0000) 

0.9468 
(0.0000) 

0.0086 
(0.0645) 

0.0428 
(0.0011) 

0.9402 
0.0000) 

0.0051 
(0.0663) 

0.0378 
(0.0000) 

0.9502 
(0.0000) 

0.0111 
(0.0715) 

0.0336 
(0.0003) 

0.94445 
(0.0000) 

Log-
Likelihood 

- 409.3328 -352.5956 -149.3089 -451.7276 

SIC - 393.2391 -368.6843 -165.4027 -467.8213 
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TABLE 4 
GARCHSK MODELS – EXCHANGE RATES 

The reported coefficients shown in each row of the table are ML estimates of the GARCHSK model:  
 

t1t1t εrαr += −  

1t2
2

1t10t hβεββh −− ++=  

1t2
4

1t10t

1t2
3

1t10t

kδηδδk

s γη γγs

−−

−−

++=

++=
 

 
for percentage daily returns of of Brithis Pound/US Dollar (GBP/USD), Japanese Yen/US Dollar (JPY/USD), 
German Mark/US Dollar (DEM/USD) and Swiss Franc/US Dollar (CHF/USD) exchange rates, from January 
1990 to March 2002. ht = var(rt | rt-1, rt-2, …), st = skewness(rt | rt-1, rt-2, …), kt = kurtosis(rt | rt-1, rt-2, …), ηt = εt 
ht

-1/2, and εt | εt-1, εt-2, … follows the distribution based on a Gram-Charlier series expansion. All models have 
been estimated by ML using the Berndt-Hall-Hall-Hausman algorithm (quasi-maximum likelihood p-values 
in parenthesis; in bold are significantly different from zero coefficients at 5%). 
 

 Parameter GBP/USD JPY/USD DEM/USD CHF/USD 
Mean 

equation 
α1 0.0219 

(0.2537) 
-0.0030 
(0.8670) 

0.0249 
(0.3804) 

0.0015 
(0.9322) 

Variance 
equation 

β0 
 

β1 
 

β2 

0.0015 
(0.0783) 

0.0366 
(0.0000) 

0.9550 
(0.0000) 

0.0061 
(0.0378) 

0.0309 
(0.0021) 

0.9537 
(0.0000) 

0.0022 
(0.0159) 

0.0236 
(0.0000) 

0.9690 
(0.0000) 

0.0075 
(0.0007) 

0.0217 
(0.0000) 

0.9611 
(0.0000) 

Skewness 
equation 

γ0 
 

γ1 
 

γ2 
 

0.0053 
(0.5379) 

0.0093 
(0.0004) 

0.6180 
(0.0000) 

-0.0494 
(0.0482) 

0.0018 
(0.4190) 

0.3414 
(0.2097) 

-0.0270 
(0.0398) 

0.0175 
(0.0054) 

0.4421 
(0.0000) 

-0.0242 
(0.0989) 

0.0054 
(0.0688) 

0.6468 
(0.0002) 

Kurtosis 
equation 

δ0 
 

δ1 
 

δ2 
 

1.3023 
(0.0000) 

0.0028 
(0.0000) 

0.6229 
(0.0000) 

1.2365 
(0.0038) 

0.0014 
(0.1102) 

0.6464 
(0.0000) 

1.9649 
(0.0000) 

0.01356 
(0.0000) 

0.4045 
(0.0002) 

0.5500 
(0.0000) 

0.0060 
(0.0000) 

0.8303 
(0.0000) 

Log-
Likelihood 

- 472.3652 -237.6668 -117.5896 -420.9973 

SIC - 432.1309 -277.9012 -157.8240 -461.2317 
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TABLE 5 

GARCH MODELS -  STOCK INDICES 
 
 

The reported coefficients shown in each row of the table are ML estimates of the standard GARCH model:  
 

t1t1t εrαr += −  

1t2
2

1t10t hβεββh −− ++=  
 
for percentage daily returns of S&P500, NASDAQ100, DAX30, IBEX35 stock indices, from January 1990 to 
July 2003, and MEXBOL from January 1995 to July 2003. ht = var(rt | rt-1, rt-2, …), εt | εt-1, εt-2, … follows a 
N(0,ht) distribution. All models have been estimated by ML using the Berndt-Hall-Hall-Hausman algorithm 
(quasi-maximum likelihood p-values in parenthesis; in bold are significantly different from zero coefficients 
at 5%). 

 
 
 

 Parameter S&P500 NASDAQ DAX30 IBEX35 MEXBOL 
Mean 

equation 
α1 0.03394 

(0.0544) 
0.1266 

(0.0000) 
0.0179 

(0.3133) 
0.0943 

(0.0000) 
0.1564 

(0.0000) 

Variance 
equation 

β0 
 

β1 
 

β2 
 

0.0055 
(0.0414) 

0.0587 
(0.0000) 

0.9379 
(0.0000) 

0.0149 
(0.0155) 

0.0948 
(0.0000) 

0.9009 
(0.0000) 

0.0317 
(0.0092) 

0.09394 
(0.0000) 

0.8918 
(0.0000) 

0.05741 
(0.0026) 

0.1035 
(0.0000) 

0.8666 
(0.0000) 

0.0827 
(0.0958) 

0.1194 
(0.0098) 

0.8591 
(0.0000) 

Log-
Likelihood 

- -1459.6826 -2424.1550 -2525.9824 -2441.0090 -2095.6885

SIC - -1475.9532 -2440.4262 -2542.2484 -2457.2650 -2111.0210
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TABLE 6 

 NAGARCH MODELS – STOCK INDICES 
 

The reported coefficients shown in each row of the table are ML estimates of the NAGARCH model:  
 

t1t1t εrαr += −  

1t2
21/2

1-t31t10t hβ)hβε(ββh −− +++=  
 
for percentage daily returns of S&P500, NASDAQ100, DAX30, IBEX35 stock indices, from January 1990 to 
July 2003, and MEXBOL from January 1995 to July 2003. ht = var(rt | rt-1, rt-2, …), εt | εt-1, εt-2, … follows a 
N(0,ht) distribution. All models have been estimated by ML using the Berndt-Hall-Hall-Hausman algorithm 
(quasi-maximum likelihood p-values in parenthesis; in bold are significantly different from zero coefficients 
at 5%). 

 
 
 

 Parameter S&P500 NASDAQ DAX30 IBEX35 MEXBOL 
Mean 

equation 
α1 0.0461 

(0.0098) 
0.1387 

(0.0098) 
0.0200 

(0.2602) 
0.0956 

(0.0000) 
0.1665 

(0.0000) 

Variance 
equation 

β0 
 

β1 
 

β2 
 

β3 
 

0.0126 
(0.0028) 

0.0607 
(0.0000) 

0.8776 
(0.0000) 

-0.9588 
(0.0000) 

0.0270 
(0.0055) 

0.1086 
(0.0000) 

0.8605 
(0.0000) 

-0.4828 
(0.0000) 

0.0332 
(0.0010) 

0.0758 
(0.0000) 

0.8855 
(0.0000) 

-0.5678 
(0.0000) 

0.0560 
(0.0009) 

0.0865 
(0.0000) 

0.8609 
(0.0000) 

-0.5326 
(0.0000) 

0.0852 
(0.0142) 

0.0961 
(0.0004) 

0.8169 
(0.0000) 

-0.8349 
(0.0000) 

Log-
Likelihood 

- -1401.8598 -2385.3512 -2496.0414 -2413.6763 -2050.0510

SIC - -1422.1982 -2405.6903 -2516.3739 -2433.9963 -2069.2165
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TABLE 7 
GARCHSK MODELS – STOCK INDICES 

 
The reported coefficients shown in each row of the table are ML estimates of the GARCHSK model:  
 

t1t1t εrαr += −  

1t2
2

1t10t hβεββh −− ++=  

1t2
4

1t10t

1t2
3

1t10t

kδηδδk

s γη γγs

−−

−−

++=

++=
 

 
for percentage daily returns of S&P500, NASDAQ100, DAX30, IBEX35 stock indices, from January 1990 to 
July 2003, and MEXBOL from January 1995 to July 2003. ht = var(rt | rt-1, rt-2, …), st = skewness(rt | rt-1, rt-2, 
…), kt = kurtosis(rt | rt-1, rt-2, …), ηt = εt ht

-1/2, and εt | εt-1, εt-2, … follows the distribution based on a Gram-
Charlier series expansion. All models have been estimated by ML using the Berndt-Hall-Hall-Hausman 
algorithm (quasi-maximum likelihood p-values in parenthesis; in bold are significantly different from zero 
coefficients at 5%). 
 

 Parameter S&P500 NASDAQ DAX30 IBEX35 MEXBOL 
Mean 

equation 
α1 0.0211 

(0.2285) 
0.1229 

(0.0000) 
0.0080 

(0.6557) 
0.0949 

(0.0000) 
0.1775 

(0.0000) 

Variance 
equation 

β0 
 

β1 
 

β2 

0.0023 
(0.1117) 

0.0387 
(0.0000) 

0.9586 
(0.0000) 

0.0098 
(0.0202) 

0.0822 
(0.0000) 

0.9149 
(0.0000) 

0.0261 
(0.0119) 

0.0851 
(0.0000) 

0.9021 
(0.0000) 

0.0417 
(0.0042) 

0.0843 
(0.0000) 

0.8928 
(0.0000) 

0.1228 
(0.0028) 

0.1663 
(0.0000) 

0.8023 
(0.0000) 

 
Skewness 
equation 

γ0 
 

γ1 
 

γ2 
 

-0.0458 
(0.0518) 

0.0085 
(0.0139) 

0.0227 
(0.9187) 

-0.0886 
(0.0106) 

0.0078 
(0.0032) 

0.2174 
(0.4136) 

-0.0245 
(0.2911) 

0.0048 
(0.2006) 

0.6781 
(0.0168) 

-0.0446 
(0.0161) 

0.0189 
(0.0000) 

0.1352 
(0.0852) 

0.0228 
(0.3101) 

0.0125 
(0.0136) 

0.2969 
(0.3112) 

Kurtosis 
equation 

δ0 
 

δ1 
 

δ2 
 

3.0471 
(0.0000) 

0.0055 
(0.0019) 

0.0882 
(0.5715) 

1.4576 
(0.0175) 

0.0007 
(0.6228) 

0.5518 
(0.0034) 

0.4866 
(0.0016) 

0.0010 
(0.0229) 

0.8493 
(0.0000) 

0.2526 
(0.0026) 

0.0004 
(0.0129) 

0.9208 
(0.0000) 

0.3302 
(0.0254) 

0.0010 
(0.3634) 

0.9018 
(0.0000) 

Log-
Likelihood 

- -1404.5752 -2375.0218 -2484.1335 -2414.6928 -2056.0966

SIC - -1445.2519 -2415.7000 -2525.7985 -2455.3328 -2094.4277
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TABLE 8 
NAGARCHSK MODELS – STOCK INDICES 

The reported coefficients shown in each row of the table are ML estimates of the NAGARCHSK model:  
 

t1t1t εrαr += −  

1t2
21/2

1-t31t10t hβ)hβε(ββh −− +++=  

1t2
4

1t10t

1t2
3

1t10t

kδηδδk

s γη γγs

−−

−−

++=

++=
 

 
for percentage daily returns of S&P500, NASDAQ100, DAX30, IBEX35 stock indices, from January 1990 to 
July 2003, and MEXBOL from January 1995 to July 2003. ht = var(rt | rt-1, rt-2, …), st = skewness(rt | rt-1, rt-2, 
…), kt = kurtosis(rt | rt-1, rt-2, …), ηt = εt ht

-1/2, and εt | εt-1, εt-2, … follows the distribution based on a Gram-
Charlier series expansion. All models have been estimated by ML using the Berndt-Hall-Hall-Hausman 
algorithm (quasi-maximum likelihood p-values in parenthesis; in bold are significantly different from zero 
coefficients). 

 Parameter S&P500 NASDAQ DAX30 IBEX35 MEXBOL 
Mean 

equation 
α1 0.0358 

(0.0466) 
0.1255 

(0.0000) 
0.0152 

(0.4009) 
0.1024 

(0.0000) 
0.1742 

(0.0000) 

Variance 
equation 

β0 
 

β1 
 

β2 
 

β3 

0.0083 
(0.0006) 

0.0416 
(0.0000) 

0.9099 
(0.0373) 

-1.0116 
(0.0000) 

0.01841 
(0.0038) 

0.0986 
(0.0000) 

0.8801 
(0.0000) 

-0.4351 
(0.0000) 

0.0278 
(0.0005) 

0.0696 
(0.0000) 

0.8961 
(0.0000) 

-0.5597 
(0.0000) 

0.04460 
(0.0004) 

0.0729 
(0.0000) 

0.8800 
(0.0000) 

-0.5795 
(0.0003) 

0.1000 
(0.0001) 

0.1202 
(0.0000) 

0.7834 
(0.0000) 

-0.7703 
(0.0000) 

Skewness 
equation 

γ0 
 

γ1 
 

γ2 
 

-0.0451 
(0.0373) 

0.0091 
(0.1034) 

0.0552 
(0.7418) 

-0.0618 
(0.0005) 

0.0103 
(0.0025) 

0.4572 
(0.0000) 

-0.0261 
(0.2285) 

0.0050 
(0.1883) 

0.6573 
(0.0124) 

-0.0204 
(0.1174) 

0.0045 
(0.1423) 

0.5325 
(0.0022) 

0.0525 
(0.0782) 

0.0180 
(0.0045) 

0.1922 
(0.5459) 

Kurtosis 
equation 

δ0 
 

δ1 
 

δ2 
 

3.1652 
(0.0000) 

0.0150 
(0.0000) 

0.0293 
(0.6645) 

1.6929 
(0.0003) 

0.0053 
(0.0025) 

0.4684 
(0.0014) 

0.4536 
(0.0016) 

0.0009 
(0.0161) 

0.8581 
(0.0000) 

0.2012 
(0.0858) 

0.0004 
(0.0749) 

0.9365 
(0.0000) 

1.9901 
(0.0011) 

0.0055 
(0.0004) 

0.4017 
(0.0271) 

Log-
Likelihood 

- -1371.4169 -2351.1665 -2461.0251 -2382.5437 -2016.8569

SIC - -1416.1613 -2395.9126 -2505.7566 -2427.2477 -2059.0212
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TABLE 9 

LIKELIHOOD RATIO TESTS 

 

The table shows the values of the maximized log-likelihood function (logL) when the distribution for the error 
term is assumed to be normal (standard GARCH or NAGARCH specification) and when it is assumed to be a 
Gram-Charlier series expansion of the normal density (GARCHSK or NAGARCHSK specification), the 
likelihood ratio (LR) and asymptotic p-values for the series employed in the paper (in bold are significantly 
different from zero LR statistics)  
 
 
 

PANEL A: EXCHANGE RATES 
STATISTIC GBP/USD JPY/USD DEM/USD CHF/USD 

LogL(GARCH) 409.3 -352.6 -149.3 -451.7 

LogL(GARCHSK) 472.4 -237.7 -117.6 -421.0 

LR 
(p-value) 

126.1 
(0.00) 

229.9 
(0.00) 

63.4 
(0.00) 

61.5 
(0.00) 

 
 

PANEL B: STOCK INDICES 
STATISTIC S&P500 NASDAQ100 DAX30 IBEX35 MEXBOL 

LogL(NAGARCH) -1401.9 -2385.4 -2496.0 -2413.7 -2050.1 

LogL(NAGARCHSK) -1371.4 -2351.2 -2461.0 -2382.5 -2016.9 

LR 
(p-value) 

60.9 
(0.00) 

68.4 
(0.00) 

70.0 
(0.00) 

62.3 
(0.00) 

72.8 
(0.00) 
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TABLE 10 

DESCRIPTIVE STATISTICS FOR CONDITIONAL VARIANCES 
 

The table shows the main descriptive statistics for the conditional variances obtained from GARCH and 
GARCHSK models for GBP/USD series, and from NAGARCH and NAGARCHSK models for S&P500 
series paper (in bold are significantly different from zero Jarque-Bera statistics)  
 
 

 
 GBP/USD S&P500 

STATISTIC ht - GARCH ht – GARCHSK ht - NAGARCH ht - NAGARCHSK 

Simple size 3124 3124 3413 3413 

Mean 0.3264 0.3026 1.1394 1.0928 

Median 0.2647 0.2432 0.7692 0.7513 

Maximum 1.4762 1.3944 8.3534 6.9340 

Minimum 0.0988 0.0776 0.1731 0.1771 

Stand. Dev. 0.2034 0.1980 1.0575 0.9533 

Skewness 2.2384 2.1624 2.5160 2.2077 

Kurtosis 9.4659 8.9007 11.1431 8.9475 

Jarque-Bera 
(p-value) 

8050.721 
(0.0000) 

6966.893 
(0.0000) 

13030.790 
(0.0000) 

7802.598 
(0.0000) 
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TABLE 11 

IN-SAMPLE PREDICTIVE POWER 
 
 

The variable predicted is the squared forecast error (εt
2) and the predictors are the conditional variances (ht) 

from, respectively, the standard GARCH or NAGARCH models and GARCHSK or NAGARCHSK models. 
Two metrics are chosen to compare the predictive power ability of these models: 
 

1. Median absolute error |)(| 2
tt hmedMAE −= ε  

2. Median percentage absolute error 






 −
= 2

2 ||

t

tt h
medMPAE

ε
ε

 

 
The metrics are based on the median given the high dispersion of the error series. 
 
 
 

SERIES MAE MPAE 
G 0.2030 1.9227 GBP/USD 
GSK 0.1874 1.6567 
G 0.3369 2.2226 JPY/USD 
GSK 0.3165 2.0134 
G 0.3058 1.7982 DEM/USD 
GSK 0.2895 1.6028 
G 0.3749 1.8096 CHF/USD 
GSK 0.3635 1.6788 
NG 0.5884 1.7690 S&P500 
NGSK 0.5723 1.7670 
NG 0.9061 1.3801 NASDAQ 
NGSK 0.9209 1.3075 
NG 1.0225 1.5102 DAX30 
NGSK 1.0207 1.5071 
NG 1.0081 1.4610 IBEX35 
NGSK 1.0109 1.4349 
NG 1.6743 1.6508 MEXBOL 
NGSK 1.6308 1.5531 

 
 

 


