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Abstract 

This paper presents an integrated econometric view of maximum likelihood 

methods and more traditional two-pass approaches to estimating beta-

pricing models. Several aspects of the well-known "errors- in-variables 

problem" are considered, and an earlier conjecture concerning the merits 

of simultaneous estimation of beta and price of risk parameters is 

evaluated. The traditional inference procedure is found, under standard 

assumptions, to overstate the precision of price of risk estimates and an 

asymptotically valid correction is derived. Modifications to accommodate 

serial correlation in marketwide factors are also discussed. 





On the Estimation of Beta-Pricing Models
", 

Sharpe (1964) and Lintner (1965) demonstrate that, in equilibrium, a 

financial asset's expected return must be positively linearly related to its 

"beta", a measure of systematic risk or comovement with the market portfolio 

1return: 

Ei - 10 + 11Pi for all assets i, (1) 

where 

E • the expected return on asset i,i 

Pi • asset i's market beta, 

10 • the expected return on a "zero-beta" portfolio, 

and 

11 • the market risk premium. 

Since Pi is the slope coefficient from the regression of asset i' s 

returns on those of the market portfolio, it seems natural to estimate the 

risk-return relation of this capital asset pricing model (CAPM) in two 

stages. In the first pass, beta estimates are obtained from separate time-

series regressions for each asset. Mean returns are computed for each asset 

as well, and 1 and 1 are then estimated from a second-pass cross-sectional
0 1
 

regression (CSR):
 

" 
Ri - 1 0 + 1 1P! + ~i' (2) 

This approach is adopted by Lintner, who includes a measure of residual risk 

in the CSR's in order to test the hypothesis that "only systematic risk 
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2
matters." Inference is complicated, for security returns are cross-

sectionally correlated and heteroskedastic. Therefore, conclusions based on 

the usual ordinary least squares (OLS) standard errors for the regression 

3(2)	 can be misleading. 

Fama and MacBeth (1973) introduce an alternative technique for 

estimating the precision of CSR estimates. 4 They run a CSR of returns on 

beta estimates in each month of the sample period: 

(3) 

The "rolling" betas are estimated from several years of data prior to each 

CSR. In this way, a time series of estimates is generated for ~j' j-O,l. 

The sample mean of these ~j t' s is taken as the final estimate and standard 

errors are computed in the usual manner, as if the series of estimates is 

independent and identically distributed with mean The independence 

assumption is not strictly satisfied, however, due to measurement error in 

the overlapping beta estimates. Nonetheless, this time series procedure is 

an improvement over the naive OLS approach since the nonscalar covariance 

structure of returns is reflected in the variance of the monthly estimates. 

Despite the fundamental role played by the two-pass methodology in 

modern asset-pricing empirical work, not much is known about its statistical 

properties. Since the independent variable in the CSR is measured with 

error, the second-pass estimator is subject to an errors-in-variables (EIV) 

problem, rendering it biased in small samples. If a single beta is 

estimated for each asset over the entire period, however, measurement error 

in beta declines as the time-series sample size, T, increases. In this 

.' . 
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case, we show that the second-pass estimator is T-consistent; i. e., it 

converges to the true value of gamma as T ~ ~. 

-. The fact that estimation error in the betas disappears in the limit 

does not mean it can be ignored, even in large-sample inference. What 

matters is the rate of convergence, as reflected in the asymptotic variance 

of the second-pass estimator. The asymptotic variance is derived here, 

permitting an evaluation of the validity of the traditional inference 

5procedure. We find that the Fama-MacBeth time-series procedure for 

computing standard errors fails to reflect measurement error in the betas 

and overstates the precision of the gamma estimates. Examples given in the 

paper indicate that adjustments for this problem can be important in 

practice. 

Given the limiting distribution of the second-pass estimator, as T ~ ~, 

its precision can be compared to that of the maximum likelihood estimation 

(MLE) techniques used by Gibbons (1982) and Stambaugh (1982). Not 

surprisingly, for a given set of assets the commonly used OLS version of the 

second-pass estimator need not be asymptotically efficient. However, when 

an estimator of the covariance matrix of returns is incorporated in a GLS 

version of the second-pass estimator, two-pass and (efficient) MLE methods 

are asymptotically equivalent. In fact, the GLS estimator is identical to 

6
the Gauss-Newton estimator that Gibbons (1982) uses in actual calculations. 

Gibbons emphasizes that use of the MLE approach eliminates the EIV 

problem since the gammas and betas are estimated simultaneously. 

Apparently, this advantage is lost in going to the linearized system since, 

as just noted, the resulting Gauss-Newton estimator turns out to be a 

second-pass regression estimator and thus subject to an EIV bias. Although 
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Gibbons' claim for true MLE is intuitively reasonable, the precise sense in 

which the problem is eliminated is not clear, since the standard asymptotic 

properties of this approach (as T -+ CD) are shared by the second-pass GLS 

regression estimator. To gain further insight, we look at the behavior of . , 

the estimators when the number of securities is large. 

Given some restrictions on the covariance matrix of returns, classical 

EIV analysis implies that the usual (OLS) second-pass estimator is not N-

consistent; i.e., it is not consistent when the time-series length is fixed 

and the number of securities, N, is allowed to increase without bound. 7 

Aware of this problem, Black, Jensen, and Scholes (1972), Blume and Friend 

(1973), and Fama and MacBeth (1973) employ elaborate portfolio grouping 

procedures designed to minimize measurement error while maintaining 

considerable cross-sectional variation in the portfolio betas. Assuming 

independence of the market model residuals, Black, Jensen, and Scholes show 

that the second-pass estimator based on a fixed number of well-diversified 

asset portfolios is N-consistent. 

If there is an inherent advantage to maximum likelihood estimation, 

then one might expect it to be manifested analytically in terms of the N-

consistency property, even without portfolio grouping. To explore this 

possibility, we consider a framework in which the residual covariance matrix 

is restricted, since the unrestricted covariance matrix estimate is not 

invertible when the number of assets is sufficiently large. This scenario 

is challenging econometrically, given that standard results for maximum 

likelihood estimation apply as the time series increases, but not as the 

8number of assets increa~es. It is also interesting economically in light 

of the growing literature on asset pricing in infinite asset or sequential 
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economies, the pioneering work being that of Ross (1976) on the arbitrage 

pricing theory (APT). We find that MLE does possess the desired N­

.
... consistency property, thus providing some formal support for Gibbons' 

intuitive assertion. 

Still another approach to estimation of the risk-return relation is 

employed by Litzenberger and Ramaswamy (1979). They adopt a standard EIV 

solution that amounts to a simple modification of the second-pass 

.est1mator. 9 Hess (1980) questions the value of this procedure, though, 

emphasizing that it assumes the (true) residual covariance matrix is 

diagonal and known exactly. Nonetheless, we show that a similar estimator 

is N-consistent with these conditions relaxed. Furthermore, the asymptotic 

distribution of the estimator, as T ~ ~, is unaltered by the EIV 

modification. Thus, on the basis of the econometric properties considered 

here, we cannot distinguish between this modified version of the two-pass 

methodology and (simultaneous) MLE. Each approach constitutes a promising 

alternative to the traditional portfolio grouping procedure as a means of 

dealing with EIV bias. 

HaVing briefly reviewed the literature and summarized our main results, 

we now outline the remainder of the paper. Section I introduces some 

notation and describes the multifactor asset pricing framework in which our 

analysis is conducted. A generalized version of the two-pass methodology is 

developed in Section 2, integrating elements from the classic studies by 

Black, Jensen and Scholes (1972) and Fama and MacBeth (1973). The 

asymptotic properties of this methodology are explored in Section 3 and 

illustrated through examples in Section 4. Section 5 discusses the relation 

between traditional two-pass techniques and the more recently employed MLE 



6 

approach, while Section 6 considers solutions to the small-sample EIV 

problem when "many" assets are available. Some concluding observations are 

offered in Section 7. Formal proofs and a simple heuristic for dealing with 

"rolling" beta estimates are given in the Appendix. 

1. Assumptions and Notation 

1.1 The econometric specification 

Although early applications of the two-pass methodology focused on 

pricing with respect to a single market index, the procedure has been used 

more recently in the estimation of multifactor pricing relations of the form 

i-l, ... ,N (4) 

where Ei - E(R. ) is the expected return on asset i and
1t 

t-l, ... ,T (5) 

FIt is a kl-vector of general factors and F2t is a k of factors that2-vector 

are portfolio returns. For example, F might contain innovations inl t 

certain macroeconomic variables whereas could include stock and bondF2t 

index returns. Many studies in the literature do not incorporate the 

additional pricing restriction that is implied (see below) when a given 

factor is a portfolio return. Such a factor would formally be viewed here 

as an element of the F vector. The bi's are row vectors of factor modelI 

regression coefficients or systematic risk measures, while ~l and ~2 are the 

associated "price of r i sk" vectors of dimension kl and k respectively.
2, 

The £it'S are factor model disturbances. 
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The econometric analysis will be facilitated by the use of matrix 

notation. Let R (E) be the vector of returns (expected returns) on the Nt 

assets for period t, and £t the N-vector of residual returns. "Vectors" are 

column vectors unless noted otherwise. B1 and B2 are Nxkl and Nxk2 matrices 

of regression coefficients associated with the factors Fl and F
2, 

respectively, and a is the N-vector of factor model intercepts. Equations 

(4) and (5) can now be written as 

E - [1N 
B]r (6) 

and 

t-l, ... , T (7) 

where 

Nxk 

F' • (F' lxkt lt 

and 

lx(k+l) 

with k • kl+k2. 

If the factor portfolios also satisfy the linear risk-return relation 

(4), then 

(8) 

i.e., the associated prices of risk equal the expected portfolio returns in 



8
 

10 excess of the zero-beta rate. Averaging (7) over time, imposing (6) and 

(8), and noting that E - a + B
1E(F1) + B2E(F2), 

11
yields 

B]r + I: (9) : 

where 

and 

By (9), expected return is still linear in the asset betas conditional 

on the factor outcomes. The random coefficient vectors in this relation, ~l 

and "'2' are referred to, accordingly, as "ex post prices of risk." They 

equal the ex ante prices plus the (unconditionally) unexpected factor 

outcomes. In the factor portfolio case, this reduces to an ex post mean 

excess return. Given (9), cross-sectional covariation in returns arises 

either from the marketwide random coefficients or from covariation between 

the factor model disturbances. Note, also, that the variance of each ex 

post price of risk is just the variance of the corresponding factor sample 

mean. 

The following assumptions are used at various points in the analysis 

below. 

Assumption 1. The vector I: is independently and identically distributed
t 

over time, conditional on (the time series of values for) F, with 
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and 

(rank N) 

Assumption 2. F is generated by a stationary process such that the firstt 

and second sample moments converge in probability, as T ... ..." to the true 

moments which are finite. Also, F is asymptotically normally distributed. 

Although often used in the literature, Assumption 1 is a strong condition 

which will be relaxed in future work. 

Some additional notation will be used throughout the paper. In 

general, a over a parameter indicates an estimator of that parameter. 
A A 

In particular, B and ~ are the usual unbiased multivariate linear regression 

estimators of B and ~, the matrix of factor model regression coefficients 

and residual covariance matrix, respectively. These estimators are obtained 

from separate OLS time-series regressions for each asset and cross-products 
A 

of the OLS residuals. ~F (~F) is the population (unbiased sample) 
-1 A 

covariance matrix of the factors and SF • (T-l)T ~F' 

The expression "pli~" is an abbreviation for "the probability limit as 

T ... """. "... " indicates convergence in distribution as T ... ...,. The
T 

A 

"asymptotic covariance matrix" of an estimator 8, for a parameter 9, refers 
A 

to the covariance matrix of the limiting distribution of JT(9-9). In 

particular, ~F denotes the asymptotic covariance matrix of F given by 

Assumption 2 above. lath serially uncorrelated factors, the covariance 

matrix of F is ~rlT; hence the asymptotic covariance matrix is ~F' Finally, 
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X61JY denotes the Kronecker product of two matrices, X and Y, whereby each 

12 
element of X is multiplied by y. 

1.2	 The underlying pricing model : 

Although the APT often serves as the theoretical motivation for 

multifactor empirical analyses, the formulation of testable hypotheses 

requires a richer theoretical model and stronger empirical assumptions than 

13
those typically made in the APT literature. The general framework 

developed in Shanken (1987) supposes that the financial markets are in 

equilibrium, and that the econometrician observes a "multivariate proxy" for 

the	 associated equilibrium benchmark, which is unobservable. Think of the 

factors, F and F Lr; (5), as the proxy, and consider a hypotheticall 2 

regression of the equilibrium benchmark on these factors. Let m be the 

benchmark and £ its residual component. Then we have 
m 

Propos i tion 1. The beta pricing relation (4) holds if (i) the benchmark 

residual, £m' is uncorrelated with the returns, R i 1, ... ,N, ori t, 

equivalently if (11) the factor model residuals, £it' i l, ... ,N, are 

14uncorrelated with the be~chmark. 

Condition (i) says that the proxy captures the "relevant" variation in 

the benchmark, whereas (ii) ensures that the factor model disturbances are 

not a source of "priced" risk. A sufficient condition for (i) or (ii) to 

hold is that the benchmark be spanned by the factors. This spanning idea 

goes back to the mult:.beta interpretations of the traditional CAPM in 

Rosenberg and Guy (1976), Ross (1976), and Sharpe (1977), where the market 



11 

portfolio serves as the benchmark. It also plays an important role, but in 

reverse, in Breeden's (1979) demonstration that Merton's (1973) multibeta 

intertemporal CAPM "collapses" into a single-beta consumption model. In 

this case, unanticipated changes in consumption are spanned by innovations 

in aggregate wealth and the state variables that describe the opportunity 

set. 

Regarding (i) or (ii) as an implicit joint hypothesis in asset pricing 

tests is a logical extension of Roll's (1977) important critique of the 

early CAPM tests. Similar conditions are explicitly introduced in the 

recent eqUilibrium versions of Ross's APT, although the empirical 

significance of these assumptions is sometimes overlooked. For example, 

Connor (1984) assumes that the market return is spanned by the given 

15
factors, whereas Dybvig (1983) and Grinblatt and Titman (1983) make 

assumptions ensuring that the factor model disturbance for each asset is 

16 
(approximately) uncorrelated with aggregate wealth. 

Another issue that arises in connection with pricing relations like (4) 

concerns the level of conditioning in the analysis. Equilibrium models 

typically assume that investors condition on all available information when 

forming expectations znd making decisions. However, the iterated 

pricing relations will be considered in future work. 

expectation arguments of Hansen and Singleton (1982) and Grossman and 

Shiller (1982) provide a basis for conditioning on a subset of the 

information set in empirical work. In this paper we focus on the 

unconditional joint distribution of returns and factors. Conditional 

17 

While we assume that the relevant unconditional moments are constant, 

this does not preclude variation in the conditional moments. In particular, 
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Assumption 2 allows for serial correlation in the factors. This could 

arise, for example, if (conditional) expectations about the factors are 
. ' 

changing through time in a persistent manner. Persistent time variation in 

conditional betas, while not ruled out in theory, would appear to be 

generally inconsistent with our assumption that the disturbance terms in the 

l S unconditional factor model are serially independent. 

2. A Generalized Two-Pass Procedure 

In this section a general version of the two-pass procedure is 

developed that, apart from some details of implementation. generalizes the 

approaches of Black. Jensen and Scholes (1972) and Fama and MacBeth (1973). 

henceforth BJS and FM. BJS impose the factor-portfolio constraint on the 

market index in their study. while FM do not. Also, FM employ a series of 

cross-sectional regressions (CSR's) with rolling betas. while the BJS 

estimator amounts to a single CSR with each asset's beta estimated using all 

19of the given data. Our analysis follows BJS in this respect. Extensions 

to deal with rolling betas are considered in the Appendix. Both BJS and FM 

use time-series procedures to obtain standard errors for the CSR estimates. 

These procedures are considered later in Section 3.2. 

A purported advantage of the "predictive" (rolling beta) approach is 

that it avoids the problem of a spurious cross-sectional relation arising 

20from statistical dependence between returns and estimated betas. Under 

assumptions typically made in this literature. though. contemporaneously 

estimated betas and mean returns are uncorrelated. a point not previously 

noted. Moreover. assuming joint normality of the asset returns and factors. 
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the estimated betas and mean returns are statistically independent. These 

observations follow from part (i) of Lemma 1 below. 

It may also appear that, unlike the contemporaneous approach, the use 

of rolling beta estimates allows for changes in the true betas over time . ., 
However, by assuming that betas are constant for, say, overlapping five-year 

periods, one is effectively assuming constancy over the entire period. 

Nonetheless, it is possible that the predictive approach with annual 

updating will prove more robust with respect to misspecifications of our 

underlying assumptions. 

Combining the multibeta expected return relation (6) with the 

21restriction on 1 in (8) yields
2 

(10) 

where 

and 

1x(k1+1). 

This relation suggests the following procedure for estimating replacef Ol ; 
,., ,., 

B and B with time-series estimates B and B respectively, and regress
l 2 1 2, 

R • B F2 on the resulting X. 12 can then be estimated as the difference 
2


between the elements of F2 and the CSR estimate of 10.
 

If k so that no factor-portfolio constraints are imposed, the
2-O, 

procedure above amounts to a CSR of R on B1 and a constant. This is 

similar, apart from estimation of betas. to the approach of FM. 
A" A A 

then, since R- B F - a, we have a CSR of a on ~ - In the single
2 2 

B2lk2 
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index case considered by BJS, the corresponding restriction is ­a i 10(1­
22

b the familiar "CAPM" constraint on the market model intercepts.
i 2), 

Although ordinary least squares (OLS) has been employed most often in 

the literature, weighted least squares (WLS) and generalized least squares 

23(GLS) have also been used in second-pass regressions. Each of these 

estimators for r is of the general formOl 

" " " 

with 

"" 

" 
for some random (k matrix A. In particular,1+1)xN 

" "" 1"A • (X'X)- X' 

in the OLS case while 

" "" 1" 1"" 1A • (X'~- X)- X'~-

" 
for GLS. The off-diagonal elements of ~ are set equal to zero in WLS. 

The asymptotic analysis of the general form of the second-pass 

estimator is presented in the next section. We conclude this section with 

an important lemma that provides the statistical foundation for many of our 

24 later resu1ts. 

" 
Lemma 1. Let B (B) be an Nk-vector obtained by transposing the rows of 

v v 
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B (B) and stacking these N k-vectors on top of one another. Let H be the 

random (N+Nk+k) -vector [~', (B - B)', (r - E(F»']' and let g be av v
 

constant k-vector. Then, given Assumptions 1 and 2,
 

(i)	 B, £, and Fare uncorre1ated unconditionally and conditional on F. ., 
" 

If £t	 is jointly normally distributed conditional on F then B, ~, 

and ~	 are independent conditional on F, while ~ and ~ are independent 

of F.	 If F is jointly normally distributed independently over time,t
 

then Band F are also independent.
 

(ii)	 JTH converges in distribution, as T ~ ~, to a normal distribution 

with mean zero and a block diagonal covariance matrix with blocks 

(~, ~LF 
-1 

' Lp) '
 
"
 

(iii)	 JT[B - B]g converges in distribution, as T ~ ~, to a normal 

distribution with mean zero and covariance matrix (g,~;lg)~. 

3.	 Asymptotic Distribution of the Second-Pass Estimator 

3.1	 The main theorem 

In conducting inferences about a pricing theory, we are generally 

concerned with the variability of the second-pass estimator about the true 

gamma vector. It is apparent from (9), though, that the eSR can also be 

viewed as a procedure for estimating the ex post price of risk vector. This 

might be relevant, for example, in evaluating mutual fund performance. The 

theorem below considers the asymptotic distribution from both perspectives, 

yielding some interesting insights. 

"" 
Theorem 1. Let r Ol • A[R - B2 with AX - I +l and pli~ A-A. Let 1'2 • F2] kl 

Then, given Assumptions 1 and 2, 
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A 

(i) f is a T-consistent estimator for f. 

(ii) JT[f 
A 

- f] converges in distribution, as T ~ ~, to a normal distribution 

with mean zero and covariance matrix (l+c)O (dimension k+1) , where c • 

The upper left block of 0 equals A'J:,A' (dimension k1+1). 

Let v be the first column of this block and v the first element of v.o 
The lower right block of 0 (dimension k2) equals v01k 1k and the upper 

2 2 25 
right block is a (k matrix with each column equal to -v.1+1)xk2 

A 

(iii) JT[f f] converges in distribution, as T ~ ~, to a normal 

distribution with mean zero and covariance matrix (l+c)O + ~-* F 

(dimension k+1) , where ~F* (the "bordered version" of ~F) consists of a 

top row and left column of zeroes, with ~F (dimension k) in the lower 

right block. 

Several aspects of Theorem 1 deserve emphasis. In standard regression 

analysis, the condition AX - I is necessary and sufficient for the 

corresponding linear regression estimator to be unbiased. In the present 

EIV context, this condition is equivalent to the T-consistency of the 

· 26second -pass regress i on est1mator. 

The matrix 0 captures the residual component of variance for the 

second-pass estimator. The sub-matrix AEA' is the usual expression for the 

covariance matrix of a linear regression estimator. It measures the 

variation of f about the ex post parameter vector f 01' ignoring estimation01 

error in the betas. Similarly, other elements of 0 reflect the variation of 

12 around 12· Given the factor-portfolio constraint (8), this is just the 

variation in 10. 

~ , . 
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When estimating the ex ante price of risk, the factor-related variation 

in the ex post price must also be considered. As indicated in (iii), this 

" factor component of variance is measured by the variance of the factor 

sample mean. If the factors are serially uncorrelated, the asymptotic 

covariance matrix of r is just Er- More generally, an "autocorrelation­

consistent" estimate of Er can be obtained using time-series procedures that 

27 " 
account for serial dependence. Note that the variance of "0 has no 

factor-related component, as this estimator equals the return on a portfolio 

. h b etas 0 f zero (asymptot i ca11)w~t y on each factor. 28 

The scalar c is an asymptotic adjustment for EIV and cO is the 

corresponding EIV component of variance. The adjustment reflects the fact 

that the variance of the beta estimates is directly related to residual 

variance and inversely related to factor variability. In addition, since 

the contribution of systematic risk to expected return is proportional to 

the price of risk, so is the impact of measurement error in beta. 

Therefore, the variance adjustment increases with the squared price of risk. 

The precise expression for c follows from part (iii) of Lemma 1 and 

corresponds to a linear combination of the measurement errors, with weights 

equal to the respective prices of risk. Given a single factor-portfolio, c 

is just the squared value of the well-known Sharpe measure of performance. 

2
Consider the scenario in which 1: is a scalar matrix, (7 IN' and A 

1 2 -1(X'X) - X'. In this case, Al':A' equals (7 (X'X) , the "standard" expression 

for the covariance matrix of an OLS estimator. Given the observations 

above, nt-statistics" naively computed from this formula must overstate the 

statistical significance of the second-pass OLS estimates. Estimation error 

in the betas and factor-related variation in the price of risk estimator are 
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both ignored by this approach. Recognition of the latter (random 

coefficients) problem by BJS led to the development of the time-series 

methodology which we now consider. 

3.2 The traditional time-series approach 

In our general framework, the time-series methodology entails running a 

CSR of R - B on X each period, thereby generating a series of estimatest 2F2t 

As earlier, the regression for a given period also provides an 

estimate of that period's ex post price of risk, i. e . , the ex ante price 

plus the (unconditionally) unexpected factor outcome. Taking the mean of 

the series yields the CSR estimator r 01' computed with R - B2F2 as the 

dependent variable, as in Theorem 1. Inferences about the mean have 

traditionally been based on the sample variance of the estimates. Our next 

result shows that this procedure neglects the EIV problem and may not 

accurately reflect the factor-related variation in the estimator. 

"" 
Theorem 2. "Let r 01t • ~[Rt - t-1, ... ,T with AX - I +1 and p1i~ AB2F2t] k1 

- A. Let ~2t • - ~Otlk' Then, given Assumptions 1 and 2, the sampleF2t 
" 2 " 

covariance matrix, W, of the r series converges in probability, as T ~ ~,t 

* *to W • 0 + ~F' where ~F is the bordered version of ~F' Thus, aT-consistent 

estimator for the asymptotic covariance matrix in (iii) of Theorem 1 is 

given by 

(11) 

""-1" "* 
where c • ri2~F r 12 and ~F is an autocorrelation-consistent estimator for 
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Consider the usual case in which the factors are assumed to be serially 

, . independent, so that ~F - ~F' It is straightforward to show that, if the 

true betas were used in the second-pass CSR, the covariance matrix of the 

CSR estimator would equal Y, divided by T. 29 This is intuitively clear, 

given that Y is obtained by setting the EIV adjustment term, c, equal to 

zero 1n (iii) of Theorem 1. Since the asymptotic covariance matrix exceeds 

Y by a positive definite matrix when c>O, the traditional time- series 

approach generally overstates the precision of the second-pass estimator. 

The problem is easily carrecced , however I using the consistent covariance 

estimator in (11). 

There is one important context in which the EIV adjustment is not 

needed, as c equals zero. This is when testing the joint hypothesis that 

all prices of risk equal zero Ii. e., r 12 - O. If any element of r 12 is 

nonzero, however, then the asymptotic variance of every element of r is 

affected, since c>O in this case. Thus, in testing whether a particular 

factor is priced in a multifactor analysis, the EIV adjustment must be 

included. Also, the adjustment is needed in constructing asymptotically 

valid confidence intervals for the gamma parameters. 

If the factors are serially dependent, there is an additional 

misstatement of precision when using the traditional procedure, since ~F 

need not equal ~F' This is due to the fact that the variance of an average 

is not simply the population variance divided by the number of observations, 

but depends on the covariances as well. Positive autocorrelation will cause 

the traditional procedure to overstate the precision (understate the 
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variance) of the CSR estimator while negative correlation will have the 

opposite effect. This is considered further in Section 4.2. 

3.3 Expanding the risk-return relation 

In some applications, the risk-return relation (4) may be expanded to 

include additional variables like firm size or variance of return. Suppose 

there are k such variables. Let Z be the corresponding Nxk matrix of3 3 

values for the N assets and "1 a k3-vector of associated expected return3 
30 premia. We assume Z is constant over time and measured without error. In 

this case, Theorems 1 and 2 remain valid provided that X • [IN - B2lk
2 

B Z], r (and r) are expanded to include "1 3 , r is replaced by r ' andl Ol 013 

~F* is supplemented by k3 rows and columns of zeroes for entries associated 

with "1 3 . 

The expanded risk-return relation provides a simple framework in which 

to test the beta-pricing hypotheses (4) and (8). The joint hypothesis is 

rejected if any of the additional variables is "priced", I.e., if the CSR 

estimate of "1 is significantly different from zero. Note that adjustment3 

of standard errors for EIV is necessary in this context since r need not12 

equal zero under the null hypothesis. 

There is a sense in which the EIV adjustment is greatest when the 

pricing hypotheses (4) a~d (8) hold and relatively less important when "1 is3 

nonzero for some additional variable. Suppose all of the factors are 

portfolio returns and a riskless asset exists. Thus, we can talk about the 

minimum-variance frontier generated by the factors. The quadratic, c, is 

the square of the slope of the familiar tangent to this frontier, drawn from 

31the riskless asset in mean-standard deviation space. 
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If (4) and (8) hold, then the factor tangency portfolio will also be 

the tangency portfolio for the frontier constructed from the larger asset 

universe that includes the N assets as well as the k factor portfolios. In 

this case, c is the maximum squared Sharpe measure (ratio of risk premium to 

standard deviation of return) over all portfolios of the N+k investments. 

On the other hand, if 7 is nonzero then some such portfolio will dominate3 

the factor tangency portfolio, and c will be less than this maximum possible 

value. 

4. Empirical Examples 

4.1 EIV-adjusted standard errors 

In this section we take a break from the econometric analysis and 

briefly look at some data. This will serve to illustrate the previous 

theorems and also provide a sense of the relative magnitudes of the 

different components of variance discussed earlier. Both studies cited 

below employ OLS in the second-pass regressions. The betas for a given 

monthly CSR are estimated using five (or more) years of prior data and are 

updated annually. Neither study incorporates factor-portfolio constraints. 

For simplicity, we ignore the slight modification, suggested in the 

Appendix, for dealing with rolling betas. :Alternatively, the calculations 

below can be viewed as hypothetical illustrations of the results in Section 

3 with representative parameter values. 

In their classic paper, FH consider a single-factor model, with the 

return on the equally-weighted CRSP stock index as a proxy for the market 

portfolio. Several specifications are explored, both with and without the 

additional variables beta-squared and residual variance. For the overall 
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period from 1935 to June 1968, the estimated market prices of risk range 

from .72 (percent per month) to 1.14. The standard deviation of return on 

the index for this period is 6.11. Therefore, the largest EIV adjustment 

(see Theorem 1) is (1.14/6.11)2 - .035. Clearly, this will not have much 

effect on the inferences drawn. 

Chen, Roll and Ross (1986), henceforth CRR, present empirical results 

for a number 'of multifactor models. We shall focus on the estimates for a 

five-factor model in Panel B of Table 4 of their paper. Two of the five 

factors are return related, two others involve inflation, and the remaining 

32
factor is a growth rate of industrial production. Combining the CRR price 

of risk estimates for the period 1958-1984 with the sample covariance matrix 

33of the factors, yields an EIV adjustment term, c , equal to .36. Recall 

that c is directly related to the magnitude of each price of risk and 

inversely related to factor variance. On the other hand, the t-statistic 

for a given price coefficient is a ratio of the estimated price to its 

standard error, one determinant of which is the corresponding factor 

variation. Thus, the fact that c is much greater for the multifactor model 

than the single index model is not too surprising, given the highly 

significant (unadjusted) t-statistics that CRR report. 

The t-statistic for the zero-beta rate, computed in the traditional 

manner, is 1.361 with (two-sided) p-value .17. According to Theorem I, with 

c - .36, the standard error of the estimate should be multiplied, and the t-

statistic divided by Jl.36, to account for EIV. The adjusted t-statistic is 

1.167 with p-value .24. Coefficients on additional variables like firm size 

would, if included, be treated in the same way. 
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The precision of the price of risk estimates is affected 

proportionately less than the zero-beta rate, since only the residual 

component of variance is "grossed up" by the EIV adjustment. As an example, 

consider the unanticipated inflation (U1) factor which, in principle, should 

be serially uncorrelated. CRR report a point estimate of -.0629 (percent 

per month) for the price of UI risk, with a t-statistic of -1.979 (p-va1ue _ 

.048). Thus, the unadjusted standard error is .0318. To compute the 

adjusted variance, we divide the appropriate diagonal element of (11) by T, 

the number of monthly observations. 34 The result is 

1.36[(.0318)2 - .0561/324] + .0561/324 - .001313 

where .0561 is the variance of UI and T - 324. Note that .0318 already 

reflects division by JT. The adjusted standard error is .0362, an increase 

of about 14 percent. The adjusted t-statistic is 1.738 with p-value .082. 

Based on the numbers above, factor-related variation accounts for 13% 

of the total adjusted variance of the UI price of risk estimator. The 

residual component (unadjusted variance minus factor variance) explains 64% 

and the EIV component the remaining 23%. In contrast, most of the variance 

of the FM market price of risk estimator is factor-related. Percentages for 

the basic specification are: factor-85%, residual-14%, and EIV-less than 1%. 

As a result, the ~ post market price of risk is estimated quite precisely, 

the point estimate being .85 (percent per month) with standard error .13, as 

compared to the standard error of .33 for the ex ante price. These 

differences between FM and CRR reflect, among other things, the greater 
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time-series explanatory power of the CRSP index and multicollinearity in the 

multibeta CSR's. 

4.2 Correlation-corrected standard errors 

To illustrate the potential impact of factor serial correlation, 

consider a one-factor model with the (real) return, R on the equally­mt, 

weighted CRSP index as the factor. As discussed in Section 3.2, the 

variance of R need not equal the value implied under independence if the 
m 

returns are serially correlated. An estimate of this correlation effect can 

be derived from the variance ratio statistics, VR(k) , reported in Table 2 of 

Poterba and Summers (1988). It is straightforward to show that the ratio of 

var(R) to var(R )/T is just VR(T)jVR(l). For example, if T - 96 months,m m 

the longest horizon considered by Poterba and Summers, then VR(96)jVR(1) ­

.353/.809 .436, reflecting the negative autocorrelations found at 

35relatively long lags. As 1/J.436 - 1.51, the t-statistic on the sample 

mean must be increased by about fifty percent to reflect autocorrelation in 

the index. 

The t-statistic for a two-pass CSR estimate of the market risk premium 

is affected less, since the residual component of variance is not affected 

at all. If v is the EIV-adjusted asymptotic variance (ignoring serial 

correlation) of monthly risk-premia estimates, and the market variance over 

the same (eight year) period is, say, 85 percent of v, then the correlation-

corrected variance is 

.436(.85v) + .15v - .52v. 
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Thus, we "discount" the factor component of variance and then add back the 

rest of v, which reflects the residual and EIV-related variation in the 

" 

estimator. The required t-statistic correction is now about forty percent 

(1.39 - 1/).52). When data from the Depression years is excluded in 

estimating the variance ratios, a smaller correction is indicated - about 

fifteen percent. Note that asymptotic standard errors for the zero-beta 

rate and "additional variable" risk premia are not affected by factor 

autocorrelation. 

The numbers used in the computations above are not estimated with much 

precision and may be subj ect to small-sample biases. 36 The correlation 

corrections suggested are nontrivial, however, and warrant further attention 

in future research. 

5. The Relation Between Two-Pass and Maximum Likelihood Methods 

Section 3 analyzed the asymptotic properties of a class of T-consistent 

second-pass regression estimators. Small-sample considerations aside, one 

would prefer to use the most efficient estimator available. From the form 

of the asymptotic covariance matrix in Theorem 1, we see that factor-related 

variance and the EIV adjustment term are the same for each estimator. Thus, 

the relative precision of second-pass estimators depends only on their 

residual components of variance. An appeal to the Gauss-Markov Theorem of 

classical regression analysis implies that the residual component is 

37minimized by the GLS estimator described in Section 2. While the GLS 

estimator of r is thus efficient in a limited sense, it remains to be shown 

that it is still efficie~t when a broader class of estimators is considered. 
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Under the "usual assumptions" of joint normality and serial 

independence for the factors and asset returns, standard results imply that 

MLE is asymptotically efficient with respect to the larger class of all T-

consistent asymptotically normal estimators. The MLE approach entails 

maximizing the constrained multivariate normal density function over the 

parameters B, r, L, E(F), and L A computationally simpler approach
F

. 

linearizes the restriction (4) about initial consistent estimates of the 

parameters and then applies multivariate linear regression methods. This 

Gauss-Newton technique is known to be asymptotically equivalent (as T ~ ~) 

to MLE. 

Recent work by Kandel (1984), extended in Shanken (1986), makes MLE 

computations straightforward when all factors are portfolio returns. In 

this case, the zero-beta estimate is the solution to a quadratic equation. 

Our next theorem addresses the general case in which some factors are not 

portfolio returns and relaxes the assumption, made in previous work, that 

the factors are serially uncorrelated and normally distributed. Although a 

closed form formula is not obtained, the computational burden is reduced 

considerably since maximization over the entire parameter space is reduced 

to the problem of minimizing a nonlinear function of just kl+l variables. 

The numerator of this function is the familiar quadratic which is minimized 

by the GLS regression estimator, while the denominator corresponds to the 

EIV adjustment encountered earlier in Theorem 1. 

Theorem 3. Under Assu;nptions 1 and 2, and given joint normality of R 
t 

conditional on F, 

* (i) the MLE for ~O and ~l • ~1 - E(Fl) minimizes the function 
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(12)
 
.. 

:he:e, in this context, 12 • F2 - 10
1 and e • a - 10[lN - B

k2 21k2] 

B111' 

(ii)	 If, in addition, the MLE for E(F) is F, then the MLE for 11 equals the 

MLE for 11* plus F1 , and the MLE for 12 equals F minus the MLE for 102 

times lk ,38 
2 

Our final result in this section reveals a surprising relation between 

the two-pass procedure and more conventional statistical methods, thereby 

resolving an issue raised earlier. 

Theorem 4.	 The second-pass GLS estimator for r equals the Gauss -Newton 

" " estimator, provided that B and ~ are taken as the initial T-consistent 

estimates for	 B and~. In this case, the initial consistent estimate for r 
39 

is irrelevant. 

It follows from Theorem 4 that GLS is asymptotically equivalent to MLE and 

hence is efficient uncer the "usual" assumptions. This is somewhat 

unexpected. since the second-pass estimator employs the unconstrained beta 

estimates which are asymptotically inefficient. Additional results on 

efficient estimation of beta and expected return can be found in Shanken 

(1982b). 
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Although we omit the details, the equivalence between two-pass GLS and 

MLE continues to hold in the general framework of Theorems 1 and 2. Thus, 

MLE standard errors "automatically" incorporate the EIV adjustment discussed 

earlier. However, if independence is assumed when, in fact, the factors are 

serially correlated, an explicit correlation correction will be needed. The 

procedure is identical to that described in Section 4.2 for the two-pass CSR 

estimator. 

Two practical limitations of Theorem 4 should be noted. For one thing, 

concern that factor model parameters may be changing over time generally 

restricts the time-series length, T, employed in empirical applications. As 

a result, the number of securities available for use in the CSR's typically 

exceeds T. In such cases, unless additional structure is imposed on~, the 

usual MLE and GLS estit:lators are undefined, as ~ is singular. While a 

reduced set of securities or portfolios could be used, Theorem 4 says 

nothing about the relative precision of the resulting estimators and, say, 

40OLS based on the original set of securities. 

There is also reason to doubt the validity of the asymptotic 

approximations for GLS and MLE when N, the number of assets, is "relatively 

large" compared to T. Intuitively, this is due to the large number of 

covariance parameters that must be estimated. More formally, it can be 

A-I
shown that the variance of each component of ~ is inversely related to T­

N. I have demonstrated elsewhere that this can lead to striking 

discrepancies	 between asymptotic and small-sample inferences in multivariate 

41tests of the linear pricing relation. The precise effect on the 

variability of the estimators is less clear and requires further 
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investigation, perhaps through simulations. Additional concerns about 

small-sample issues motivate the analysis in the next section. 

6. Consistent Estimation when the Number of Assets is Large 

The analysis in Sections 3 and 5 indicates that two-pass estimation 

leaves little to be desired with regard to its large.sample properties, as 

T ~ w. All forms of the estimator are T-consistent and the GLS estimator is 

asymptotically efficient. Its asymptotic variance is larger than it would 

be if the true betas were known; however, this loss of precision is not 

inherent in the two-pass approach since MLE has the same large-sample 

distribution. Thus, the asymptotic analysis, as T ~ m, does not reveal an 

EIV "problem". 

In this section we examine the estimators from a different analytical 

perspective. We assume T is fixed and consider limiting behavior as N, the 

42number of assets, appro£ches infinity. This perspective is particularly 

relevant given the large number of securities for which returns data are 

available. We cannot reasonably hope to consistently estimate the ex ante 

price of risk with T fixed, since increasing the number of assets affects 

residual variation but does not resolve uncertainty about the unanticipated 

factor realizations. ~erefore, we define an estimator to be N-cQnslstent 

if it converges in probability to the ex post parameter vector, r, as N ~ 

~. Such an estimator is consistent for 70 and asymptotically unbiased with 

respect to the ex ante price of risk parameters. Classical EIV analysis 

implies, in this context, that the second-pass estimator is biased and 

inconsistent, provided the residual covariance matrix is assumed to be 

scalar. 
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Black, Jensen, and Scholes (1972) suggest two-pass estimation with 

portfolio grouping as a means of dealing with the EIV problem. Assuming 

independence of the market (factor) model disturbances, grouping permits the 

construction of a finite set of portfolios that are well-diversified in the 

limit as N ~~. Since residual variation is eliminated, the portfolio betas 

are free of estimation error. It follows that the limiting value of the 

portfolio-based estimator equals the ex post price vector, i.e., the 

estimator is N-consistent. Actually, strict independence is not essential 

for this result since one can appeal to versions of the law of large numbers 

that allow for "weak" dependence between the factor model disturbances. For 

43example, a block-diagonal residual covariance structure is permitted. 

Litzenberger and Ramaswamy (1979) employ a modified version of the WLS 

second-pass estimator that is N-consistent without portfolio grouping. 

Although they assume the residual covariance matrix is diagonal, again this 

strict condition is not necessary. An assumption of greater concern is that 

the security residual variances are known exactly. This condition is 

relaxed in the development below. We also show how to incorporate factor­

portfolio pricing restrictions and multiple factors in the modified two-pass 

procedure. 

Our modified 015 estimator is based on the following lemma. Since the 

focus of this section is on convergence to r, the statistical analysis is 

conditioned on the factor values. Therefore, Assumption 2 is not needed. 

Lemma 2. Given Assumption 1, we have the following expectations 

(conditional on F) 
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" " E(X'X) - X'X + qM'~;lM (13) 

and 

" " "-1-*E[X' (R - B2F2) ] - (X'X)r - qM'!:F F2	 (14)01 

where 

q • tr(!:)/(T-l) 

-* Here, F2 is a k-vector	 consisting of kl zeroes followed by F M is a2
. 

kx(kl+l)	 matrix with -lk in the lower left corner, I k in the upper right 
2 1 

corner, and zeroes elsewhere. 

Under certain conditions, (13) and (14) allow us to eliminate the 

systematic effects of measurement error in the betas, thereby yielding 

"consistent" expressions for (X'X) -1 and (X'X)r01' These expressions are 

combined to form the modified estimator. Subtracting the estimator of ~O 

from F then provides an N-consistent estimator for ~2' The situation is2
 
-*
 simpler when k as M is an identity matrix and F2 equals zero in this

2-O, 

case. In general, we have the following result. 

Theorem 5. Under Assumption 1 and given sufficiently weak cross-sectional 

dependence between the residual disturbances, 

(15) 

" " 44
is an N-consistent estimator for r Ol ' where q • tr(!:)/(T-l). 
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An N-consistent modification of the WLS estimator can also be obtained, 

provided that the joint distribution of returns, conditional on the factors, 

is normal. Recall that WLS amounts to dividing each element of X and 

R- B
" F by the corresponding estimated residual standard deviation and then
2 2 

running an OLS CSR. The modified WLS estimator, in terms of these 

" 
standardized variables, is of the same form as (15), except that tr(I:) is 

replaced by N(T-k-1)/(T-k-3). If the residual variances were known, tr(I:) 

would just be replaced by N, since standardized residual variance equals one 

45in this case. The factor (T-k-1)/(T-k-3) is thus an adjustment for 

sampling error in the variance estimates. To generate a modified GLS 

" 
estimator under the joint normality assumption, X' should be replaced by 

" " 1 " 
X'I:- and tr(I:) by N(T-k-1)/(T-N-k-2) in (15). Large-sample properties, as 

46N ~ ~, cannot be analyzed, however, since I: is singular for large N. 

We explore the large-sample benefits of simultaneous estimation of 

betas and gammas by examining an "OLS version" of MLE. Thus, the estimator 

is computed as if the residual covariance matrix is scalar. This amounts to 

replacing the numerator of the function in equation (12) by the simple sum 

of squares, e'e. Our final theorem considers the behavior of this 

estimator. 

Theorem 6. Under Assumption 1 and given sufficiently weak cross-sectional 

dependence between residual disturbances, the "OLS version" of MLE is N­

consistent for F01 when k1-0. 

The proof of Theorem 6, given in the Appendix, makes use of the fact 

that the estimator for 70 is the root of a quadratic equation. Limiting 
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values of the coefficients in this equation are derived and it is verified 

that ~O is the appropriate root of the limiting equation. A similar proof 

is possible when k2-O and kl-l. Interestingly, normality of the residuals 

is not needed for these results, even though it is assumed in generating the 

estimator. With normality, one can show that a WLS version of MLE is also 

N-consistent. The extension to a general factor model is left to future 

research. While Theorec 6 does not say anything directly about the usual 

GLS version of MLE, it does suggest that joint estimation of betas and 

gammas may be beneficial. 

7. Conclusions 

This paper has presented an integrated econometric view of maximum 

likelihood methods and two-pass approaches to estimating beta-pricing 

models. The usual framework has been expanded in a simple manner to allow 

for serial correlation in the underlying market factors. In addition, two 

aspects of the "errors-in-variab1es (EIV) problem" have been considered. 

The first concerns a downward bias in commonly used standard errors for 

price of risk and zero-beta estimates. The second involves the "classical" 

EIV problem, 1. e., small-sample bias in the second-pass cross-sectional 

regression estimates due to measurement error in the betas. With regard to 

the latter bias, our results provide some support for the use of modified 

two-pass methods or maximum likelihood estimation (MLE) as alternatives to 

traditional two-pass estimation with portfolio grouping. A few words of 

caution are in order, however. 

The modified version of the second-pass estimator incorporates an 

unbiased estimator of a certain positive definite matrix. The matrix 
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estimate is not constrained to be positive definite, however, so the 

diagonal elements could be negative in a given sample. One would not have 

confidence in the usefulness of the modification in such a case. Shanken 

and Weinstein (1988) encounter this problem in a multifactor context,47 

while Banz (1981) alludes to "serious problems in applying the Litzenberger­

Ramaswamy estimator" in his analysis of the size effect. The MLE approach 

may also be subject to problems. In particular, Amsler and Schmidt (1985) 

report that MLE was "occasionally off by spectacularly large amounts" in 

simulations where the true values were known. 

Given these observations, as well as the limitations inherent in any 

asymptotic statistical analysis, the results of this paper cannot be taken 

as an absolute prescription for econometric practice. The procedures 

developed here should, nonetheless, provide valuable information to 

complement that obtained by the usual methods. More extensive simulations 

will probably be needed to fill the gaps in our knowledge. Hopefully, this 

paper has clarified some of the questions that should be addressed and 

offers useful benchmarks against which simulation results can be 

interpreted. 
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Appendix 

Proof of Lemma 1 

Let Fd be a Txk matrix with columns equal to the factor time-series 

realizations expressed as deviations from the time-series means. Let £i be 

a T-vector of factor model disturbances for asset i and let £ be an NT-

vector obtained by stacking the £i on top of one another, for i-I, ... ,N. 

Also, let U • B - Band U equal the Nk-vector, B - B. Then v v v 

U 
v Nkxl (AI) 

and 

Therefore, 

Nxl (A2) 

(A3) 

A 

since FdlT - O. Also, E(UIF) - 0 and E(~IF) - O. It follows that Band £ 

are conditionally (and unconditionally) uncorrelated and, since mean 

independence implies uncorrelatedness, both are uncorrelated with F. 

Let £ be the NT-vector of OLS residuals corresponding to the NT-vector 

of disturbances, £. Then there is a txT symmetric idempotent matrix M (not 

to be confused with M in Section 6) I that depends only on the factor 

realizations [see Theil (1971), P. 113] such that MIT - 0, MFd - 0, and 
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(A4)
 

Proceeding as in (A3) above, it follows that £ is conditionally (and 

unconditionally) uncorre1ated with £ and B. Assuming joint normality of £t 
A A 

conditional on F, and noting that ~ is a function of the vector, c , the 

above results imply that B, ;, and ~ are conditionally independent. The 

remaining assertions in (i) are standard regression results. 

To prove (ii) for the case in which F is independent and identicallyt 

distributed (i.i.d.) consider the (N+Nk+k)-vector 

(AS)
 

Since E(£tIF) - 0 and Var(£t!F) - ~ is constant, the components of Q aret 

uncorre1ated and have zero means. Thus Var(Q) is block diagonal with blocks 

-1 
~, m~F ' and ~F' respectively. Assumptions 1, 2, and the central limit 

theorem for i.i.d. random vectors then imply that JTQ converges in 

distribution, as T ~ m, to a multivariate normal distribution with mean zero 

and covariance matrix Va~(Q). The same result is obtained if (Ft-E(F»' is 

replaced by (row t of Fd) and ~F by SF in the middle component of Qt'Fdt 

This is true since JT times the average difference between Q and thet 

modified Q converges in probability to zero. The desired conclusion nowt 

follows from the observation that U' equals the (modified) middle component
v 

of Q. The general case is proved similarly using the last part of 

Assumption 2 and a more general central limit theorem. Part (iii) follows 

easily from part (ii) since 
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Proof of Theorem 1 

Equations (9) and (10) imply that 

(A6) 

Letting U • B - B, 

" " 
R - B2F2 - xrOl + [; - ur12] (A7) 

Since AX - Ik +1' (A7) implies that 
1 

Assumption 2 implies that pli~ r - r. Hence, (ii) and (iii) of Lemma 

1 imply that 

jT[; - uT12] ~T N[O, E(l+c)] (A9) 

Therefore, using (AS), (A9), and the fact that pli~ A - A, 

" jT[rOl - rOll ~T N[O, AEA'(I+c)] (AIO) 

The rest of part (i1) of Theorem I follows from the observation that, by 

definidon, 

(All) 

Part (ii) implies that pli~ r - r - O. This and the fact that pli~ 

r - r imply (i). 
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To prove (iii), write r - r as 

r - r - (r - r) + (f - r) (A12) 

In general, if one sequence of random variables converges in probability to 

a constant and another converges in distribution to some random variable, 

then the sequence of products converges in distribution to the product of 

the constant and the limiting random variable. Using the multivariate 

generalization of this result and the fact that F is uncorrelated with both 

c and U (Lemma 1), (A6) and (All) imply that r - r is asymptotically 

uncorrelated with F. Since the variation in r is simply that of F, the 

expressions in parentheses in (A12) are asymptotically uncorrelated and 

(iii) follows. 

Proof of Theorem 2 
1\ 1\ 

It follows from the definitions of r and r thatOl t Ol 

1\ 1\ 1\ 1\ 

r - r01 - A[ (R t - R) - - F2)] (A13)Ol t B2(F2t 

1\ 1\ 

Letting e be the time-series residual N-vector R - a - BF ,t t t 

(A14)
 

Since the time series of residuals is orthogonal to the time series of 

factor values by construction, the sample covariance matrix of the 

expression in brackets in (A14) is 

1\ 1\ 

(A1S) 
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where S with a subscript denotes the sample covariance matrix (with T in the 

denominator) of the subscripted variable. Using the fact that AB equals
l 

AA 

the last k l columns of AX - Ik +1' (A14) and (A1S) imply that the sample 
A 1 

covariance matrix of the rOlt's is 

* AS A' + SF (A16) 
e 1 

where SF * is the appropriate submatrix of SF.* Taking the probability limit 
1 

of (A16) establishes the conclusion of Theorem 2 with respect to the 

upper left block of W. The result for the lower right block follows easily 

since 

and the series of zero-beta estimates is orthogonal, in sample, to the 
AA A 

factors [use (A14) and the fact that AX - I]. The off-diagonal block of W 

is treated similarly. 

Proof of Lemma 2 

th
The following analysis is conditioned on F. Let U be the i row of

i 

U • B - B. Thus, U is the k-vector of estimation errors in the betas for
i 

asset i. Appealing to standard regression results, the covariance matrix of 

where a~ is the residual variance for asset i. Since E(U'U) equals the sum, 
1 

"_1
E(U'U) - ~F tr(~)/(T-l) (A17) 
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" 
Noting that X - X - UK, equation (13) follows. 

To prove (14), first observe that 

" " " " 
(A18) 

and recall from (A7) that 

" 

Since £ and U have zero means, this equation implies that 

" 

By (i) of Lemma 1, U is uncorrelated with R. Therefore, 

(A20)
 

where the last equality follows from (A17). Combining (A18) , (A19) , and 

(A20) yields equation (14). 

Proof of Theorem 6 

The proof below is for the case kl-O. The statistical analysis is 

conditioned on F and all limits are taken as N, the number of assets, 

approaches infinity. By Theorem 3, the OLS version of the MLE for "'0 

minimizes the function 

(A21)
 

Given results in the Appendix of Shanken (1986), it follows that f N(.,.) has 

the same sign, for all.,., as the quadratic 
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(A22)
 

where 
AA A,.. 

,.. ,.. ,.. ,..
 

and 
A A A A 

with 

1 , S·l-Fc 2 - k F 

and a the vector of OLS intercept estimates. Thus, the MLE for a given 

sample of N assets is a root of~. We shall show that the coefficients in 

(A22) converge to limits, as N ~ ~, and that ~O is a root of this limiting 

quadratic. 

Let u 
2 denote the limit of the average, over the N assets, of residual 

variance divided by T and let q2 be the limit of X'X/N. We assume that both 
x 

limits exist. By (A17) and the weak law of large numbers 

2 -1 
p1im U'U/N - U SF (A23) 

Since X - X - Ulk, it follows that 

(A24)
 

By (A7). 
,.. ,.. 

a - X~O + [£ - U(r • ~Olk)l (A25) 

Using (A23)-(A25) and the fact that c and U are uncorre1ated (Lemma 1), 

(A26) 
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By (A25), 

a - X~O + [£ - UF] (A27) 

Using (A23), (A27) , and the fact the £ and U are uncorrelated, 

(A28)
 

It follows from (A24), (A26), and (A28) that 

and 

(A29)
 

Consider the limiting quadratic 

2 
H(~) • A~ + B~ + C 

and note that, with probability one, A is not equal to zero. Since the 

roots of a quadratic are continuous functions of the coefficients, (A29) 

implies that each root of ~ converges in probability to the corresponding 

root of H. Furthermore, for sufficiently large N and with probability 

arbi trarily close to one, the MLE for ~0 will equal the smaller or the 

larger root of ~ depending on whether A is greater or less than zero [see 

Shanken (1986), p. 275]. In either case, the MLE is uniquely determined by 

the condition that fN, and hence ~, change sign from negative to positive 

at the given root. Thus, to establish N-consistency it suffices to show 

that H(~O) - 0 and that H'(~O) is positive. 
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Evaluating H at ~O yields a third order polynomial in ~O which, one can 

easily verify, is identically equal to zero! A bit of algebraic 

manipulation establishes that 

(A30) 

The discriminant of this quadratic in ~O equals o~ times 

2Since c - c is the determinant of the positive semidefinite matrix,1c3 2
 
- -1 ­[lk,F]'SF [lk,F], and cl>O, the discriminant is negative. Thus, the 

quadratic in (A30) has no real roots and must be positive for all values of 

~O' This completes the proof. 

The proof of N-consistency for the WLS version of the MLE is similar. 

In this case, however, a normality assumption is used to ensure (see Lemma 

1) that the diagonal elements of ~ are independent of £ and U. 

Accomrnodatin& "Rollin& Betas" 

The proof of Theorem 1 is modified here to derive an approximate 

covariance matrix for th3 CSR estimator when the following variation on the 

" traditional methodology is employed: The estimate (Bt) of B, used in the 

CSR for month t of a given year, is obtained from time series regressions 

over the previous five calendar years. Thus, all betas are based on five 

years of data and are updated annually. In this context, the CSR estimator 

need not be T-consistent, as expanding the time series does not eliminate 

the systematic EIV bias in each CSR. The discussion below is not, 

therefore, offered as a formal asymptotic analysis but, rather, as a simple 
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heuristic for EIV-adjustment of standard errors when rolling betas are 

48employed. 

B we havet, 

where • + F - E(F) and ~Ot • ~O' with second order error termsf 12t f 12 t 

ignored in the approximation. Taking time series sample means yields 

(compare to (A8)) 

,. 
- ~ A[£ - ur ] (A31)f 01 f 01 12

By Lemma 1 and Assumption 1, U is uncorre1ated with £ (conditional ont 

F) provided that the five year period used to estimate B either precedes ort 

is completely contained within the period over which CSR's are run. In 

cases of partial overlap, the covariance may be nonzero but is not 

systematically positive or negative. Thus, we shall treat the covariance 

between £ and IT as equal to zero. Therefore, it remains to consider the 

covariance matrix of Ur12 . 

As in the proof of Lemma 1, given a kx1 vector g, we have 

(A32) 

for each U (really U in the average U. Let zl and z2 be kx60 matrices oft) 

the form (F for two (possibly) overlapping five year beta
dFd)-lFd, 
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estimation periods, and let £1 and £2 be the corresponding 60Nxl disturbance 

vectors. Assume that entries have been reordered so that values of t from 1 

through a correspond to overlapping months, where a is between 0 and 60. It 

1 2 can then be shown that the covariance between is[IN0g'zl]£ and [IN0g'z2]£ 

g'zlI*zig times L, where I* is a 60x60 matrix with ones in diagonal entries 

. * 1 through a and zeroes elsewhere. If the overlap 1S complete, zl - z2' I ­

-1 -1-1and the scalar is g'(FdFd) g = 60 g'LF g. With partial overlap, the160,
 

scalar is approximately a/60 times this expression, reflecting the
 

proportion of overlapping (and hence correlated) observations.
 

Let T - l2n and note that, with annual updating, Ug equals the average 

of n distinct terms of the form Ug. Thus, the implied covariance matrix for 

- -2 -2-1Ug equals L times (n )(12)(60 )g'~F g times the sum of overlap (in years) 

2between all n pairs of the n beta estimation periods. This sum is 

5n + 2[4(n-l) + 3(n-2) + 2(n-3) + 1(n-4)] - 25n - 40. 

Substituting r12 for g, the resulting covariance matrix for jTUr *is c L, 12 

where 

c* - T(Sn-8)(60n2)-lc - (1-1.6/n)c 

49 and c is defined as in Theorem 1.

The suggested heuristic, then, is to use c* in place of c in the EIV 

adjustments described in the text of the paper. For example, with T-324 and 

n-27 as in the Chen, Roll, and Ross example of Section 4.1, c*-.94c. 

Intuitively, the smaller adjustment reflects the fact that, overall, n+5 
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years of data are now used in estimating betas while n years are used in the 

CSR's. Clearly, c* approaches c as n ~ ~ 
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Endnotes 

1.	 Black (1972) and Rubinstein (1973) extend the result to the case in 
which there is no riskless asset .• 

2.	 These unpublished results are reproduced in a related paper by Douglas 
(1969). 

3.	 This is essentially the "random coefficients problem" pointed out by 
Black, Jensen and Scholes (1972). See Miller and Scholes (1972) for a 
discussion of other problems associated with the Douglas-Lintner 
regressions. Jensen (1972) provides a good review of the early CAPM work. 

4.	 Black, Jensen, and Scholes (1972) introduce a related procedure that 
will be discussed later in the paper. 

5.	 Gibbons (1980) independently derives the asymptotic distribution for a 
related estimator developed by Black, Jensen, and Scholes (1972). This 
result will later be seen to be a special case of our more general analysis. 

6.	 Gauss-Newton estimation involves linearizing the nonlinear constraint 
(1) about initial consistent estimates. The constraint is nonlinear 
since the unknown parameters 11 and Pi enter multiplicatively. 

7.	 This is pointed out by Miller and Scholes (1972). 

8.	 In particular, the parameter space is no longer fixed in the latter 
case since each new asset introduces an additional beta parameter. 

9.	 Li tzenberger and Ramaswamy refer to their technique as MLE. To avoid 
confusion, we reserve this designation for the estimator obtained by 
simultaneously maximizing the likelihood function for betas and gammas 
as well as the parameters in the residual covariance matrix. 

10.	 This follows from the fact that each factor portfolio has a beta of one 
on itself and zero on all other factors. A "1" with a subscript refers 
to a column vector of ones with dimension equal to the subscript. 

11.	 A bar over a variable previously subscripted by t indicates the time 
series average of that variable. 

12.	 See, for example, Theil (1971), section 7.2. 

13.	 See Shanken (1982a, 1985b) and related discussion in Dybvig and Ross 
(1985) . 

14.	 Condition (i) is discussed in Section 6 of Shanken (1987) while the 
sufficiency of conc.ition (11) follows from the proof of Theorem 1 in 
that paper. The equivalence between (L) and (11) amounts to the 
observation that cov(m'£i) - cov(£m'£i) - cov(£m,Ri) for all i, as £i 
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and £ are orthogonal to the factors by construction. Conditions (i) 
and (~i) are not necessary for (4) to hold. For example, adding pure 
measurement error to an otherwise perfect proxy can cause these 
conditions to be vi~lated, even though expected return is still linear .. 
in the "new" betas. See Breeden, Gibbons, and Litzenberger (1989) for 
a discussion of measurement error in a single factor case. Huang and 
Litzenberger (1988, page 308) consider condition (if) in a single­
factor context, together with an assumption that the market proxy has a 
beta of one on the true market portfolio. 

15.	 Garman and Ohlson (1980), Brock (1982), and Chen and Ingersoll (1983) 
also use spanning conditions. 

16.	 Specifically, they assume that the disturbance term for a given asset 
is independent of the returns on all other assets in the economy. They 
also assume that the asset constitutes a small proportion of aggregate 
wealth. While the latter assumption can be verified using a subset of 
the asset universe, the former cannot. 

17.	 See Shanken (1990) for a simple approach to testing conditional pricing 
relations when the factors are portfolios and the zero-beta rate is known. 

18.	 Constant conditional betas and zero-beta rate, and conditionally 
serially independent disturbances are sufficient to ensure 
unconditionally serially independent disturbances in the factor 
portfolio case. I am grateful to a referee for focusing my attention 
on this issue. 

19.	 See the discussion in Blume and Friend (1973). 

20.	 The concern here is with stochastic dependence between the random 
components of these variables. Naturally, we expect to observe cross­
sectional correlation between the variables if the underlying theory is 
true. 

21.	 In general, r with multiple subscripts refers to the corresponding sub­
vector of r. 

22.	 Gibbons (1982) imposes this constraint in his MLE approach. Stambaugh 
(1982) also employs MLE, but does not impose a factor pricing 
constraint because of the specific nature of his index. 

23.	 See, for example, Litzenberger and Ramaswamy (1979) for WLS and, 
anticipating Theorem 4, Gibbons (1982) for GLS. This is not true GLS 
or WLS since the true covariance matrix is unknown. Estimation error 
in the covariance matrix does not affect the asymptotic results of 
Section 3, however. 

24.	 Proofs are in the appendix unless noted otherwise. 
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25. * "*" "* * " 
If we let 71 • 7l­

E(F1 ) and 7] • 7l-F
1 , then 71-71 - 7l-7L and part 

(ii) can be reinferpretea in ferms of this aLternative 
parameterization. Also see Theorem 3 in Section 5. 

26. The proof is 
Theorem. See, 

similar to that of the first 
for example, Theil (1971). 

part of the Gauss-Markov 

27. See, for example, Newey and West (1987). 

28. This follows 
a detailed 
estimators. 

from the condition AX-I. See Fama (1976), Chapter 9, 
discussion of the portfolio interpretation of 

for 
CSR 

29. See the proof of Theorem 1 and let U-O. 

30. Since E - a + BE(F) , time variation in Z would imply that a is not 
constant if 73 is nonzero. This is contrary to our assumptions in 
Section 1.1. A similar point is made in Hess (1980). Note that 
neither assumption on Z is required if we are only interested in the 
null hypothesis that 73 equals zero. Also, imposing the constraint (8) 
would not generally be appropriate unless 71 - 0, although it may be 
possible to transform the Z values so that ~8) is still valid. See, 
for example, Black and Scholes (1974). 

31. See Jobson and Korkie (1982). 

32. See Shanken and Weinstein (1990) for a detailed analysis of pricing 
with respect to the CRR factors. Also see related work by Chan, Chen, 
and Hsieh (1985) and McElroy and Burmeister (1988). 

33. The covariance matrix is not reported by CRR and is obtained separately. 

34. Recall that the asymptotic covariance matrix in Theorem 1 
the estimator multiplied by jT. 

is given for 

35. Also see 
(1988). 

related work by Fama and French (1988) and La and MacKin1ay 

36. See Richardson and Stock (1989). 

37. This does not require a normality assumption. 

38. The proof is available on request. 

39. The proof is available on request. 

40. See Shanken and Weinstein (1990) for an empirical examination of this 
issue. Black and Scholes (1974) reject the use of GLS estimation in 
their dividend study, due to concerns about the precision of covariance 
estimates. 
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41.	 See the discussion in Shanken (1985a) and related analysis in Gibbons, 
Ross and Shanken (1989). MacKinlay (1987) cites simulation evidence 
indicating that the true standard deviation of the GLS estimator 
exceeds the asymptotic standard deviation. 

42.	 As in the theoretical APT literature, this can be formalized in terms 
of a hypothetical infinite sequence of finite economies [see Ross 
(1976)] or a single infinite-asset Hilbert space economy [see 
Chamberlain and Rothschild (1983)]. 

43.	 The structure would have infinitely many blocks, as N goes to infinity, 
and satisfy some additional technical conditions. Connor and Korajczyk 
(1988) explore the empirical relevance of a block-diagonal structure 
for several factor models. 

44.	 The proof of Theorem 5 is similar to the analysis in Litzenberger and 
Ramaswamy (1979). A rough sketch of the proof is as follows. First. 
divide each of the expressions in brackets in (15) by NI leaving the 
product unchanged. Assume the disturbances (and hence the measurement 
errors in the betas) are sufficiently independent that a weak law of 
large numbers can be applied to cross-sectional averages of (i) the 
estimates of residual variance and, (ii) products involving measurement 
errors and/or disturbances. In this case, q/N converges in 
probability, as N goes to infinity, to the limiting average residual 
variance (assumed to exist). Furthermore, using (13) and (14), the 
inverse of the first expression converges to the inverse of the limit 
of X'X/N (assumed to exist) and the second expression converges to the 
limit of X'X/N times rOl ' The desired conclusion follows. 

45.	 This corresponds to the Litzenberger-Ramaswamy analysis when k andl-1k The WLS and GLS versions of the modified esti~tor are based on2-O.properties of the Student t and Hote1ling T distributions, 
respectively, since the residual variances and covariances are unknown. 
Details are available on request. 

46.	 The results of Section 3 also apply to the modified versions of the 
two-pass procedure discussed in this section. This follows from the 
fact that JT times q converges in probability to zero as T approaches 
infinity and that the inverse of a matrix can be expressed in terms of 
cofactors and determinants. See Shanken (1982b), Appendix E, for a 
detailed proof in the case kl-l, k2-O. 

47.	 In a personal communication, K. Ramaswamy reports a similar experience 
with two factors. 

48.	 The innovative econometric methods of Richardson and Stock (1989) might 
prove useful in a more rigorous analysis. 

49.	 If Y years are used to estimate betas than c* equals 1-(y-1)(y+1)/(3yn) 
times c. 


