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Abstract
In the equity premium, risk-free rate and excess volatility puzzles, the subjective

distribution of future growth rates typically has its mean and variance point-calibrated to past
sample averages.  This paper shows that Bayesian estimation of uncertain structural growth
parameters introduces an irreducible fat-tailed background uncertainty that can explain all three
puzzles parsimoniously by one unified theory.  The Bayesian statistical-economic equilibrium
has essentially one degree of freedom, yet all three values of the equity premium, risk-free rate,
and excess volatility derived from the model match simultaneously the stylized facts observed
empirically in the time-series data.
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1.  Introduction to the Role of Structural Uncertainty
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The “equity premium puzzle” refers to the striking failure of the standard neoclassical

consumption-based representative-agent model of stochastic economic growth to explain the large

historical difference between the average return to a representative stock market portfolio and the

average return from a representative portfolio of relatively safe stores of value.  The neoclassical

general-equilibrium paradigm predicts an equity risk premium that is orders of magnitude lower

than what is observed.   The discrepancy is so large and so pervasive as to suggest strongly that

something is fundamentally wrong with the standard formulation of the problem in terms of a

non-bizarre, comfortably-familiar coefficient of relative risk aversion, say with values .θ . 2±1

The “risk-free rate puzzle” represents another big disappointment with the standard

neoclassical model.  The stochastic generalization of the basic Ramsey formula from equilibrium

growth theory predicts a risk-free interest rate far higher than what is actually observed, hence the

puzzle.  To further compound the conundrum, alterations of the model that might lessen the

discrepancy in the risk-free rate anomaly tend to increase the discrepancy in the equity premium

anomaly.  Thus, for example, to eliminate the equity premium puzzle requires an astronomically

high rate of relative risk aversion, while to eliminate the risk-free rate puzzle calls for a

microscopically low rate of relative risk aversion.

The third major puzzle for consumption-based neoclassical theory is the “excess volatility

puzzle.”  In principle, comprehensive asset returns should be determined by fundamental

expectations about aggregate future dividends, which in turn should be determined by

fundamental expectations about the future growth prospects of the real economy.  But in practice,

observed stock market returns are vastly more volatile than the more-primitive real growth rates

that are supposedly driving them.

 Taken together, this unholy trinity of puzzles is more than just disturbing.  The proper

interpretation of these equity macro-puzzles has important ramifications throughout all of

economics.  At stake is the central issue of whether or not the standard representative-agent

consumption-based stochastic-general-equilibrium paradigm is realistic enough to be trusted as a

reliable model for understanding the most basic discounting of time and risk.  The three

intuitively-related puzzles are devastating for the credibility of the neoclassical paradigm because

they are fairly crying out that something is deeply wrong with the formulation.  Some critical
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element, which would capture the characteristic that appears to make stocks comparatively so

risky, seems to be missing from the standard model.  At least for equity pricing applications, a

consensus has developed among economists that the standard model is seriously flawed.

  Not surprisingly therefore, the family of equity puzzles has stimulated a lot of economic

research.  In attempting to explain the paradoxes, an impressive literature has developed, which is

filled with some imaginatively fruitful variations on the standard model.  To overcome one or

another equity puzzle, many new models feature exotic reverse-engineered formal (or behavioral

informal) preferences having aggregated coefficients of relative risk aversion that are typically

very high, time-varying, and correlated with the real economy.  Some valuable insights have

come from these new models, but it still seems fair to say that no new consensus has yet emerged

from within the economics profession as a whole that the puzzles have been satisfactorily

resolved.

 The point of departure for this paper is to note that, throughout the existing literature, the

risk premium and the risk-free rate are routinely calibrated by plugging into the relevant formulas

the sample mean and sample variance of past growth rates.  But strictly speaking, the correct

procedure requires the full subjective probability distributions of uncertain structural parameters

of the model, not just their point estimates.  Missing from the framework is a formal incorporation

of the decision-theoretic specification required to make a rigorously unified statistical-economic

growth model.  In effect, the implicit statistical methodology assumes that the time series are long

enough that the law of large numbers allows substituting the sample moments of past growth rates

for the population moments of future growth rates.  For many economic usages this intuitive

methodology may be justified, but, as will be shown, point calibration is a fatally flawed

procedure for the particular application of analyzing aversion to model uncertainty, which

underlies (or, more accurately, should underlie) all asset-pricing calculations.  The core problem

is that calibrating population moments to sample frequencies understates significantly the

investor’s utility-weighted predictive uncertainty, which spills over into dramatically biased asset

valuations.

This paper attempts to shed light on the equity-premium, risk-free-rate, and excess-

volatility puzzles by rooting all three issues together deeply into the common ground of Bayesian
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statistical inference.  The basic idea is that structural-parameter model uncertainty introduces a

form of Bayesian posterior background risk, which is inherited from the prior, and which,

counter-intuitively, does not converge uniformly to zero as the number of subsequent

observations increases to infinity.  Such ubiquitous background risk fattens critically the tails of

the posterior distribution of future growth rates and increases significantly the value of both the

equity premium and excess volatility, while simultaneously decreasing sharply the risk-free

interest rate. 

 To convey the essential statistical insights as crisply as possible, the simplest imaginable

specification of the interplay between Bayesian statistical inference and stochastic general

equilibrium growth is modeled.  Thus, to ease the computational burdens from delivering its basic

message the model analyzes a parsimonious competitive equilibrium over just two time periods,

with a representative agent, for a pure endowment-exchange economy (no genuine production or

investment), where returns to equity equals the growth of consumption and both are i.i.d. normal,

where the utility function is isoelastic, and so forth.  For analytical tractability the only change

made from this standard stochastic specification (wherein all parameter values are known) is to

have the model include a consistent Bayesian treatment of just two of its structural parameters:

the mean and the variance of the normally distributed future growth rate, whose uncertain values 

represent the primitive distribution of interest driving the entire system.

  In this model the prior probability density of growth rates is essentially characterized by

a single critical positive number , whose inverse  quantifies the amount of backgroundδ 1/δ

uncertainty that later shows up in the Bayesian posterior distribution.  As the modeler decreases

this -parameter continuously (which amounts to moving from a normal distribution of futureδ

growth rates towards a fatter-tailed  t distribution), the equity premium and excess volatility both

increase without limit while the risk-free rate simultaneously decreases, also without limit. 

Furthermore, the same numerical value  simultaneously generates almost exactly the equityδ(

premium, risk-free rate, and excess volatility that are observed in the time-series data.  Although

the formal model employs only familiar, analytically tractable, garden-variety specifications in

order to be able to derive a relatively transparent expression for the family of equity

discrepancies, it will become apparent that the basic insights have much broader applicability. 
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1 I wish to express my gratitude to two readers of a previous version of this paper for
making me aware of Geweke’s earlier article after noticing that I had derived a similar result.

This paper is far from being the first to investigate the effects of Bayesian statistical

uncertainty on asset pricing.  Earlier examples include Barsky and DeLong (1993), Timmerman

(1993), Bossaerts (1995), Cechetti, Lam and Mark (2000), Veronesi (2000), Brennan and Xia

(2001), Abel (2002), Brav and Heaton (2002), Lewellan and Shanken (2002), and several others. 

Broadly speaking, these papers indicate or hint, either explicitly or implicitly, that the need for

Bayesian learning about structural parameters tends to reduce the degree of one or another equity

anomaly.  What has been missing from this literature, however, is a generic appreciation of the

overwhelming force that tail-fattening structural parameter uncertainty brings to bear on asset

pricing by its dominating influence over any calculation involving expected marginal utility.  In

effect, the direction of this Bayesian force is appreciated in the literature, but not its magnitude.

The one noteworthy exception is an important paper by John Geweke (2001), who applies

a Bayesian framework to the most standard model prototypically used to analyze behavior

towards risk and then notes the extraordinary fragility of the existence of finite expected utility

itself.1   In a sense the present paper begins by accepting this non-robustness insight, but pushes it

further to argue that the inherent fragility of the standard prototype formulation constitutes an

important clue for unraveling what may be causing the equity puzzles and for giving them a

unified general-equilibrium interpretation that simultaneously fits the stylized time-series facts.

This paper will end up arguing that there are no equity ‘puzzles’ as such arising from

within a Bayesian framework.  Instead,  the arrow of causality in a unified Bayesian explanation

is reversed:  the ‘puzzling’ numbers being observed empirically are trying to tell us something

important about the implicit background prior distribution of structural model-parameter

uncertainty that is generating such data.  In the final section of the paper the three ‘puzzling’

time-series averages of the equity premium, risk-free rate and excess volatility are inverted to

back out the implicit subjective probability distribution of the future growth rate.  Measured in the

appropriate state space of expected marginal utility, a world view about the subjective riskiness of

future utility-growth prospects emerges from this Bayesian calibration exercise, which is
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2 See, for example, the survey articles of Campbell (2003) or Mehra and Prescott (2003). 
The original specification of this form was introduced by Abel (1988).

g / ln C1 & ln C0 , (1)

operationally much closer to what is being suggested by the relatively stormy volatility record of

stock market wealth than it is to the far more placid smoothness of past consumption.

2. The Family of Equity Puzzles

To cut quickly to the analytical essence of the equity macro-puzzles, an ultra-

parsimonious model is used here.  This prototype model is a drastically pruned-down version of

the textbook workhorse formulation used throughout the financial economics literature.  Here

everything else except the core structure will be set aside.  Essentially, it is fair to say that the

models used in this literature are generically isomorphic to the super-stark reduced-form model

presented here.2 

In this basic prototype model, there are two periods, the present and the future.  (The

model generalizes to a multi-period dynamic version, but the details are not really essential for

the main message of this paper and the resulting clutter of notation is distracting.)  The population

consists of a large fixed number of identical people normalized to unity.  Present consumption is

given as , while future consumption is the random variable  .   The utility U of consumptionC0 C 1

C is specified by the Von Neumann-Morgenstern utility function .    The pure-time-U(C)

preference multiplicative factor for discounting future utility into present utility is .β

Future consumption  is a random variable with some known subjective probabilityC1

distribution, but whose future realization is presently unknown.  For convenience and consistency

throughout the paper, all growth rates, interest rates, yields, and rates of return are computed as

continuously-compounded geometric averages.  Thus, the growth rate of this simple endowment-

exchange economy is the random variable

while the expected growth rate is calculated as .Ε[g] ' Ε[ln C1] & ln C0
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ra(g) ' ha(g) & ln Pa , (2)

U )(C0) ' β Ε[U )(C1) exp(ra)] . (3)

U(C) '
C 1&θ

1&θ
(4)

U )(C) ' C &θ , (5)

The primitive driving force throughout this paper is the unknown future growth rate g.  An

asset a is a contingent claim in future state g to the payoff , expressed in units ofexp(ha(g))

consumption.  The expression  is the (geometrically calculated) payoff function for asset a. ha(g)

Let the price of this asset be .  Then the corresponding (real, geometrically calculated) assetPa

return function is

from which it immediately follows that asset returns must be distributed as their payoff, plus

some constant.  

Within this model all asset markets are in some sense phantom entities, because no one

actually ends up taking a position in any of them.  They exist as shadow exchange possibilities,

but in this pure endowment economy there is no avoiding the ultimate reality that everyone’s

future consumption will end up being the future endowment, no matter how the asset markets

equilibrate.  The fundamental Euler equation of asset-pricing equilibrium for this economy is

For practical purposes of analysis, throughout the paper equations like (3) will be

enormously simplified by choosing the utility function to be of the standard iso-elastic form

with corresponding marginal utility

where the coefficient of relative risk aversion is the positive constant .  (The Bernoulliθ

logarithmic utility function is a special limiting case of (4), (5) corresponding to .)  Pluggingθ'1

(5) into (3) and rearranging terms yields, after taking natural logarithms, the expression
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ln Pa ' ln Ε[exp(ha&θg)] & ρ , (6)

ρ / &ln β (7)

x / g & Ε[g] (8)

ya / ha & Ε[ha] , (9)

ra ' ya % Ε[ra] , (10)

Ε[ra] ' ρ % θΕ[g] & ln Ε[exp(ya&θx)] . (11)

where

is the instantaneous rate of pure time preference.

An elegant and extremely useful route for proceeding further is by way of expressing all

random variables in units of deviation from their mean.  In this spirit, define

and

and then substitute (8), (9) and (2) into (6).  After canceling redundant terms and rearranging, we

have derived the fundamental relationship

where

Expressions (10) and (11) are the workhorse equations of this paper.  They show clearly

that the derived equilibrium distribution of the returns on any asset is a simple linear function of

its more-fundamental payout process, with a slope of one and a value of the intercept given by the

reduced-form expression (11).

An immediate application of (11) is to derive the risk-free interest rate.  In this situation
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rf ' ρ % θΕ[g] % ln Ε[exp(&θx)] . (12)

Ε[re] ' ρ % θΕ[g] & ln Ε[exp((1&θ)x)] . (13)

Ε[re]&rf ' ln Ε[exp(&θx)] & ln Ε[exp((1&θ)x)] . (14)

we use the standard notation   to indicate that we are treating here the special case of aa'f

deterministic asset  , for which (11) becomesya'yf'0

Another immediate application of formula (11) is for the special case of a comprehensive

broad-based equity index representing the entire economy.  Here we use the standard notation 

 to indicate that we are treating the situation of economy-wide equity , for whicha'e ya'ye'x

equation (11) yields

Subtracting (12) from (13), the equity premium here is

The meaning given in the literature to result (14) goes along the following lines.  Interpret

the left hand side of equation (14) as the actual risk premium that is observed historically in the

real world. Interpret the right hand side of equation (14) as a theoretical formula for calculating

this risk premium, given any coefficient of relative risk aversion , and, more importantly here,θ

given the true subjective probability distribution of deviations of the random future growth rate g

from its mean value .Ε[g]

Concerning the risk-aversion parameter , there seems to be some agreement within theθ

economics profession that an array of evidence from a variety of sources suggests that it is

somewhere between about one and about three.   More accurately stated, any proposed solution

which does not explain the equity premium for  would likely be viewed suspiciously by mostθ#3

members of the broadly-defined community of professional economists as being dependent upon

an unacceptably high degree of risk aversion.  By way of contrast, there is much less consensus

about the true probability distribution of future growth rates.  The reason for this traces back to
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g - Ν(µ,V) , (15)

Ε[re]&rf ' ln Ε[exp(½θ2V)] & ln Ε[exp(½(θ&1)2V)] , (16)

the unavoidable truth that, even under the best of circumstances (with a known, stable, stationary

stochastic specification that can accurately be extrapolated from the past onto the future), we

cannot know the critical structural parameters of the distribution of   unless there is ang&Ε[g]

infinitely long time series of historical growth rates.

At this point in the story, the best anyone can do is to infer from the past some estimate of

the probability distribution of  .  The rest of the story hinges on specifying the form of theg&Ε[g]

assumed density function of , and then looking to see what the data are saying about itsx'g&Ε[g]

likely parameter values.  The functional form that naturally leaps to mind is the normal

probability density function

where  and V are unknown parameter values that must be estimated statistically from past data.µ

When V in (15) is treated as a random variable, then using the formula for the expectation

of a lognormal distribution transforms the theoretical equity premium formula (13) into

where the expectation operator is understood here as being taken over V.  Note for the exponential

coefficients multiplying V in the right hand side of (16) that   whenever .  It isθ2 > (θ&1)2 θ>½

then relatively straightforward to show that point calibration to the mean of V for   biasesθ>½

formula (16) in the direction of predicting a theoretical value of the equity premium that is too

low.  The equity-premium literature generally proceeds from (13) or (16) by ignoring the bias-

producing uncertainty inherent in point estimates of V.  Instead, the usual practice calibrates V  by

plugging in the sample variance from n previous observations on growth rates, and then proceeds

as if normality still holds, instead of substituting into (16) the relevant inverted-gamma

distribution to account for the sampling error from estimating the unknown structural parameter

V.

The observed sample variance is
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3 These numbers are from Mehra and Prescott (2003) and/or Campbell (2003), who also
show summary statistics based on other time periods and other countries, most of which
naturally have somewhat lower values of   than “America in the American century.” Ε[Re]

V̂ '
1
n j

n

i'1
(gi&ĝ)2 , (17)

ĝ '
1
n j

n

i'1
gi (18)

Ε[re]&rf ' (θ&½) V̂ , (19)

where

is the sample mean.  Implicitly in the equity-premium literature, the sample size  n is presumed

large enough to make (18) and (17) sufficiently accurate estimates of their underlying true values,

but no formal attempt is made to define “sufficiently accurate” or to confirm exactly what

happens to formula (16) in this model if the estimates, and therefore the approximations, are not

“sufficiently accurate.”  In this literature the value of (16) is calculated to be what it reduces to

when there is no structural uncertainty and V is known exactly to be equal to .  After cancelingV̂

terms, the as-if-deterministic-V  version of the theoretical formula (16) then becomes

and for this special case the equity premium puzzle is readily stated.

Taking the U.S. as a prime example, in the last century or so the average annual arithmetic

return on the broadest available stock market index was , with an arithmetic standardΕ[Re].7%

deviation  .3  Converting to continuously compounded rates gives a geometric meanσ[Re].18%

 and a geometric standard deviation  .  The historically observed return onΕ[re].5.5% σ[re].17%

an index of the safest available most-liquid short-maturity bills is about 1% per annum, implying

for the equity premium that .  The mean yearly growth rate of U.S. per capitaΕ[re]&rf . 4.5%

consumption over the last century or so is about 2%, with standard deviation about 2%, meaning

.  Suppose .  Plugging these values into (19) gives .V̂..04% θ.2 Π̂..06%
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rf ' ρ % θΕ[g] & ln Ε[exp(½θ2V)] , (20)

Thus, the actually observed equity premium on the left hand side of equation (13) exceeds

the estimate (19) of the right hand side by some seventy-five times.  If this were to be explained

with the above data by a different value of ,  it would require the coefficient of relative riskθ

aversion to be 113, which is away from acceptable reality by well over an order of magnitude. 

This is the equity premium puzzle, and it is apparent why characterizing this result as

“disturbing” for the standard neoclassical paradigm may be putting it very mildly.  Plugging in

some reasonable alternative parameter values can have the effect of chipping away at the puzzle,

but the overwhelming impression is that the equity premium is off by at least an order of

magnitude.  There just does not seem to be enough volatility in the recent past historical growth

record of advanced capitalist countries to warrant such a high equity premium as is observed.

Of course, the underlying model is extremely crude and can be criticized on any number

of valid counts.  Economics is not physics, after all, so there is plenty of wiggle room for a

paradigm aspiring to be the “standard economic model.”  Still, a factor of seventy-five seems like

an awfully large base-case discrepancy to be explained away ex post factum.

Turning to the risk-free rate puzzle, the meaning given in the literature to equation (12)

parallels the interpretation given to the equity premium formula.  Interpret the left hand side of

equation (12) as the actual risk-free interest rate that is observed historically in the real world. 

Interpret the right hand side of equation (12) as a theoretical  formula for calculating this risk-free

interest rate, given  and the true subjective probability distribution of the future growth rate g. θ

Concerning the behavioral risk-aversion parameter , a value that would be accepted by theθ

economics profession as a whole is about two, roughly.  By contrast, nobody knows what is the

true subjective probability distribution of the future growth rate g.  The best that can be done here

is to make some statistical inference about the likely probability distribution of g from observing

past realizations of growth rates.

When the normality specification (15) is made and V is treated as a random variable, then

using the formula for the expectation of a lognormal distribution transforms the theoretical risk-

free rate formula (12) into
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rf ' ρ % θĝ & ½θ2V̂ , (21)

where the expectation of the third term on the right hand side of (20) is taken over V.  From the

exponential function in (20) being convex in V, a mean-preserving spread of V decreases the

theoretically predicted risk-free rate of interest.  Therefore, point calibration to the mean of V

biases formula (20) in the direction of giving a value of the risk-free rate that is always too high.  

The risk-free rate literature typically proceeds from (20) by ignoring the statistical

uncertainty inherent in measuring V.  Instead, this literature calibrates V  by essentially plugging

into (20) the point estimate  and then proceeds as if normality still holds.  Substituting theV̂

sample mean    and the sample variance   into (20) then further transforms the theoretically-ĝ V̂

calculated value of  intorf

which is a ubiquitous generic formula appearing in one form or another throughout stochastic

growth theory.  (Its origins trace back to the famous neoclassical Ramsey model of the 1920's.)

 Non-controversial estimates of the relevant parameters appearing in (21) (calculated on

an annual basis) are: .  With these representative parameter valuesĝ.2%, V̂..04%, ρ.2%, θ.2

plugged into the right hand side of (21), the left hand side becomes .  When comparedΛ̂.5.9%

with an actual real-world risk-free rate , the theoretical formula is too high by  . rf.1% .4.9%

This gross discrepancy is the risk-free rate puzzle.  With the other base-case parameters set at the

above values, the coefficient of relative risk aversion required to explain the risk-free interest rate

discrepancy is negative, while the coefficient of relative risk aversion required to explain the

equity-premium discrepancy estimated from (19) is .   The simultaneous existence of twoθ.113

strong contradictions with reality, which, in addition, are strongly contradicting each other, is

disturbing times three!

As if all this were not vexing enough, we have the additional enigma of the excess

volatility puzzle.  The observed time-series standard deviation of real equity returns  isσ[re].17%

much bigger than the observed time-series standard deviation of real consumption growth rates

.  But the return to equity in a comprehensive stock market should essentially reflect theσ[g].2%

more fundamental growth rate of the real economy it is capitalizing.  According to equation (2),
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W / 1/V , (22)

g ' µ̃ % g , (23)

for the case  of economy-wide equity returns we should be observing approximately thata'e

, yet this approximation is off by a factor of about 8.5.   In other words, the stock-σ[g].σ[re]

market “forecast” is about an order of magnitude more volatile than the fundamental underlying

consumption dividend that it is supposed to be forecasting.

 Summing up the scorecard for the standard neoclassical model, all in all we have three

strong contradictions with reality and at least one serious internal contradiction, making the grand

total add up to being a conundrum that is disturbing times four.  It was previously noted that

uncertainty in V  has the qualitative effect of diminishing simultaneously the magnitude of both

the equity-premium and risk-free rate discrepancies.   We next examine what happens

quantitatively to the family of equity puzzles when the structural parameters  and  takeΕ[g] V[g]

on the standard familiar sampling distributions that arise naturally when n sample points are

drawn randomly from a normal population. 

3.  The Bayesian Subjective Distribution of Future Growth Rates

To be perfectly clear throughout the rest of the paper, we summarize here the precise

specification of the model to be used.  The assumed structure is:  , re-Ν(Ε[re],V[re])

.  The following structural parameters are assumed to be effectively known andg-Ν(Ε[g],V[g])

fixed: , ,  , , .   The following structural parameters are unknown and must beΕ[re] V[re] rf ρ θ

estimated: , .  The Bayesian statistical estimation of  and  proceeds as follows.Ε[g] V[g] Ε[g] V[g]

Assuming the normal specification (15), define the random variable

which is commonly called the precision of a normal probability distribution.  Given any W, and

given any random variable , which represents the unknown mean of g, we can then writeµ̃

where .g-Ν(0,1/W)

Purely for simplicity here suppose that initially, before any observations are made, the

Bayesian pre-sample estimate of the random variable  is distributed as a non-informative diffuseµ̃



13.01.05    A Unified Bayesian Theory of Equity ‘Puzzles’  page 15

4 Among other places, clear expositions of Bayesian-classical duality are contained in
DeGroot (1970), Zellner (1971), Leamer (1978), Hamilton (1995), and Poirier (1995).

µ̃ - Ν(ĝ, 1/nW) . (24)

g - Ν(µ̃, 1/W) , (25)

x - Ν(0, (n%1)/nW) . (26)

prior.   Let    be a random i.i.d. sample corresponding to the normal probabilityg1, ... , gn

structure (23), which is drawn from a normal distribution with known precision , but whoseW

Bayesian pre-sample prior estimate of   is a diffuse-normal distribution.  With a knownµ̃

variance, the posterior distribution of   after n independent sample observations isµ̃

From (24) and (23), .   Therefore, , and, from applyingΕ[g]'Ε[µ̃]'ĝ g&Ε[g] ' g&ĝ

definition (8) to this situation,   and .x'g&ĝ xi'gi&ĝ

For given values of   and , the random variable g is distributed according to (23) asW µ̃

whereas, for any given value of  alone, the random variable  is distributed according to (24).W µ̃

Combining these two quasi-independent realizations of normal processes, the random variable 

  must be distributed normally with mean zero and variance equal to the sum of thex'g&ĝ

variance of the normal process (24) plus the variance of the conditionally-independent normal

process (25).  After adding together the two variances (  from (24) plus  from (25)), the1/nW 1/W

posterior distribution of  comes out to bex'g&ĝ

Thus far, the specification has proceeded as if W were known.  When W is uncertain,

Bayesian statistical theory has developed a rigorous and elegantly symmetric counterpart to the

classical statistics of the familiar linear-normal regression setup.4  The Bayesian dual counterpart

to classical statistics works with a normal-gamma family of conjugate distributions.  For reasons

that will later become apparent, we work here with a three-parameter generalization of the two-

parameter gamma distribution, which forms a normal-truncated-gamma family of conjugate

distributions.

Consider a non-negative random variable w representing the precision.   Let  be a non-δ
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φδ0(w) ' w a0&1 e &b0w / m
4

δ

w a0&1 e &b0w dw (27)

negative parameter representing an arbitrarily imposed lower support for the Bayesian prior

distribution of the precision w.  Assume that the Bayesian prior distribution of the precision w is a

truncated-gamma probability density function (with truncation parameter ) of the formδ

for , while   for .   When choosing  to be positive, the model is effectivelyw$δ φδ0(w)'0 w<δ δ

eliminating a priori all variances above .  The technical reason for declaring impermissible1/δ

worlds of unboundedly high variance is to make the integral defining the moment generating

function of x converge to a finite value.  An economic rationale presumably has to do with the

difficulty of envisioning the unbounded loss function arising from unlimited variability in growth

rates.  The implicit message is that the appropriate value of  is far from being known a priori. δ

The three non-negative parameters   of the truncated gamma distribution (27)δ, a0, b0

represent prior beliefs about the precision.  In the limit as , the mean of the gamma priorδ60%

approaches  , while the variance of the gamma prior approaches  .  Thus, at least fora0/b0 a0/b
2
0

small , the prior mean and prior variance of the precision can be assigned any values just byδ

judiciously selecting   and .  Classical statistical analysis is exactly isomorphic to thea0 b0

limiting case of a diffuse prior: , ,  .  Therefore, the analysis presented here canδ60% a060% b060%

be viewed as paralleling the classical specification very closely, except that it is slightly more

general by allowing positive parameter values other than the limiting value .0%

Let   be the posterior distribution of the precision w at a time just after observing theφδn(w)

n independent realizations  .  When , it is well known (see any of the referencesg1, ... , gn δ'0

cited in footnote 4) that the normal-gamma distribution constitutes a conjugate family of priors. 

When , we have the same conjugate family of priors, except that w is subject to a lower-δ>0

bound constraint. Therefore, the posterior is in the same form as the prior, and subject to the same

bounding constraint.  The modification of a basic conjugate-prior result in the Bayesian statistical

literature needed here is the following lemma, which is stated without proof:
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φδn(w) '
w a&1 e &bw

m
4

δ

w a&1 e &bw dw

,
(28)

a '
n
2

% a0 (29)

b '
1
2 j

n

i'1
x 2

i % b0 . (30)

a0 ' m/2 (31)

b0 ' V̂m/2 , (32)

for , while   for , where the parameters a and b are defined by the equationsw$δ φδn(w)'0 w<δ

and

It is analytically very convenient (and, in the context of this model, comes at the cost of

only an insignificant loss of generality) to compress the two parameters  and  of the priora0 b0

truncated-gamma distribution into just one parameter by imposing the additional conditions

and

where the single parameter m now quantifies the one remaining degree of freedom.  With the

above specification, m has a natural interpretation “as if”   were the sample variance calculatedV̂

from a pre-observation fictitious earlier sample of size m drawn from the same underlying

population that generated the data.  Under this interpretation, m quantifies the “degree of prior

confidence” in the value  (of V), which was in fact calculated  from the n “real” sample pointsV̂

that were actually observed.  The overall situation is then “as if”  were the sample varianceV̂
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fn(x*δ,m) ' kn(δ,m) m
4

δ

exp(&x 2nw/2(n%1)) w a&½ e &bw dw , (33)

1/kn(δ,m) ' m
4

&4

dx m
4

δ

exp(&x 2nw/2(n%1)) w a&½ e &bw dw . (34)

fn(x*0,0) '
Γ((n%1)/2)

πV̂n Γ(n/2)
[1 %

x 2

(n%1)V̂
]
&

n%1
2 , (35)

from a total sample of size  .  With this simplification, the prior distribution of the precisionm%n

is now characterized by just two non-negative parameters:  and m.δ

From combining (28) with (26), the unconditional or marginal probability density function

of x is

where   is just the constant of integration satisfyingkn(δ,m)

The two non-negative parameters  and m are highlighted in formulas (33) and (34) justδ

to remind us that (among many other things, such as  and n, which offhand seem like theyV̂

should end up being far more important in practice) the posterior probability density function of

the future growth rate depends in principle on the lower bound  and the fictitious-sample size m δ

that are conceptualized by “us” today as characterizing the prior distribution of the precision

prescribed by “them” n years ago.  Of course nobody today has the slightest notion about what

reasonable values of  or m  might have been way back then, before anyone looked at any data. δ

For just this reason, everyone’s favorite candidate today is the non-informative diffuse prior  

 and , which corresponds exactly to familiar dual-classical statistical regressionδ60% m60%

analysis.  In this dual-classical case, straightforward integration shows that (33), (34) reduces to

the (non-standardized) t distribution

whose moment generating function is unboundedly large because the relevant integral diverges. 
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(It is essentially in order to make this moment-generating integral converge that the condition

 is imposed in the first place.)δ>0

This entire preliminary discussion of the future consequences of what people now think

that people long ago “might have been thinking” about such things as an upper bound on V (of

) or a degree of prior confidence in  (of m) has an unreal tone about it.  In practice this issue1/δ V̂

ought to be non-operational –  and therefore not worth contemplating – because the intervening n

observations should have bleached the prior parameters out of the posterior distribution.  Thus, if

the number of data points n is large enough, it “should not matter” what values of   or m weδ

select now to represent past beliefs.  This “should not matter” intuition is true, it turns out, for the

parameter m, whose effects on expected utility converge uniformly in n for all .   However,m>0

the parameter  behaves fundamentally differently, because its effects on expected utility do notδ

converge uniformly in n for all .  In this sense there is a distinction, which is critical for allδ>0

expected-utility asset-pricing implications, between not knowing what value to assign now to the

prior parameter m and not knowing what value to assign now to the prior parameter .δ

The fact that expected utility is not uniformly convergent in n for all positive  has greatδ

significance for the interpretation of this paper.  A prior distribution is our imputation now of

what “they might have” imposed n years ago during the pre-data past.  It is essentially a mental

artifice for framing a subjective thought-experimental dialogue between the present and the past

concerning how to predict the future.  In such a setting, pointwise convergence of expected utility

in n for a given  is not nearly enough to guarantee a robust prior, because the prior is aδ

subjective creature of our imagination now, not an objective unchangeable reality that a real

person carved in stone n years ago to represent some intrinsic characteristic of the then-

observable world.

To have faith in the standard practice of calibrating means and variances of normal

distributions to past historical averages presupposes a robustness in the interpretation of

observable data with respect to whatever values of  or m are chosen.  Therefore, a necessaryδ

precondition for the validity of the classical statistical idea to just “let the data speak for

themselves” is that the effects of  or m should be negligible for sufficiently large n.  Thisδ

condition holds (in the space of expected utility) for m, but such a robustness condition does not
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hold (in the space of expected utility) for  .  The value of  that has now been chosen toδ δ

represent the past manifests itself as a piece of current background risk that refuses to go away

with the passage of time.  From a Bayesian viewpoint, we “let the data speak for themselves” in a

different sense from the classical statistical interpretation of this phrase.  Here, data “speak for

themselves” by telling us what is the implied value of  that real-world investors must implicitlyδ

be using in their priors, in order to be compatible with what is being observed.

To summarize, in the Bayesian setting appropriate for thinking about basic issues of risk

aversion and asset pricing (which underlie the entire family of equity puzzles), the subjective

element involved in choosing a prior distribution of structural parameters cannot be separated

from the calibration process.   Non-uniform convergence in expected-utility space means that the

fickle whimsicality of current investors about what value of the structural parameter  to selectδ

for representing the model’s initial configuration never loses its critical impact on subsequent

behavior under risk, regardless of the amount of data accumulated during the interim.  This

sensitivity to the “background shadow of ” permeates every aspect of asset pricing andδ

represents the critical component of a unified Bayesian theory capable of resolving

simultaneously all three of the so-called equity puzzles.

Taking (33) as our subjective posterior probability density function, we are now ready to

compute the Bayesian equity premium, the Bayesian risk-free interest rate, and Bayesian excess

volatility.  The next three sections of the paper do these calculations, seriatum.  In the last section

of the paper, implicit parameter values of the subjective probability distribution of future growth

rates are backed out of the data by Bayesian inverse calibration.  For each application, the

sharpest insight comes from having in mind the mental image of a limiting situation where m is

very big, while simultaneously  is very small.  When m is “very big,” the subjective Bayesianδ

distribution of future growth rates is essentially unchanged by the arrival of a new datum point. 

Such a limiting situation nullifies sampling error and focuses the mind sharply on understanding

the core Bayesian structural model-uncertainty mechanism driving the family of equity puzzles.

4.  The Bayesian Equity Premium

We now use the statistical apparatus developed in the last section of the paper to compute
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Π(δ) / ln m
4

&4

exp(&θx) fn(x*δ,m) dx & ln m
4

&4

exp((1&θ)x) fn(x*δ,m) dx . (36)

Ε[re]&rf ' Π(δe) . (37)

Ε[exp(&θx)*w] ' exp((n%1)θ2/2nw) . (38)

Ε[exp(&θx)] ' kn(δ,m) m
4

δ

exp((n%1)θ2/2nw) w a&½ e &bw dw . (39)

lim
δ60

Π(δ) ' ln lim
δ60

m
4

δ

exp((n%1)θ2/2nw) w a&1 e &bw dw

m
4

δ

exp((n%1)(1&θ)2/2nw) w a&1 e &bw dw

. (40)

the Bayesian equity premium.  For fixed m and n, let  represent the value of  as aΠ(δ) Ε[re]&rf

function of   that is obtained from formula (13) when the probability density function isδ

 defined by equation (33).  Plugging (33) into (13), we obtainfn(x*δ,m)

We then have the following proposition.

Theorem 1   Suppose that  and .  Let   be any positive value of theθ>½ m%n<4 Ε[re]&rf

equity premium.  Then there exists some positive  such thatδe

Proof:  Conditional on any given precision w, from (26) the random variable x is normally

distributed with mean zero and variance , implying(n%1)/nw

Making use of (33) then implies

It is readily apparent that as   is made to approach zero, the right hand side of (39)δ

approaches infinity.  Essentially the same argument holds for .   Thus, from (36),Ε[exp((1&θ)x)]
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Π(4) < Ε[re]&rf < Π(0) , (41)

Because , the ratio on the right hand side of (40) approaches infinity as  is made toθ>½ δ

approach zero, implying  .  At the other extreme of  , it is apparent that ,Π(δ)'%4 δ Π(%4)'0%

because there is no equity premium when there is no uncertainty.

The function   defined by (36) is continuous in .   Since Π(δ) δ

the result (37) follows. ~

The essence of the Bayesian statistical mechanism driving the theorem can be intuited by

examining what happens in the limiting case.  As , the limit of (33) is a (non-standard) tδ60%

distribution of the form (35) – except that  replaces n.  With the presumed case of large m%n m%n

and small , the central part of the t-like distribution (33) is approximated well by a normal in itsδ

middle range.  However, for applications involving the implications of risk aversion, such as

calculating the equity premium, to ignore what is happening away from the middle of the

distribution has the potential of wreaking havoc on the calculations.  For these applications, the

normal distribution may be a very bad approximation indeed, because the relatively fatter tail of

the dampened-t distribution (33) is capable of producing an explosion in formulas like (13) or

(14), implying in the limit as   an unboundedly large equity premium.  Properly construed,δ60%

such kinds of explosions are essentially giving an economic interpretation (in terms of pervasive

structural background uncertainty about the possibility of taking a serious hit in equities just when

consumption is abnormally low) to the statistical fact that the moment generating function of a t-

distribution is infinite.

An explosion of the equity premium does not happen in the real world, of course, but a

tamed near-explosive outcome remains the driving force behind the scene, which imparts the

statistical illusion of an enormous equity premium incompatible with the standard neoclassical

paradigm.  When people are peering into the future they are also peering into the past, and they

are intuitively sensing there the spooky background presence of a low-  prior volatility that couldδ

leave them holding the bag by wiping out their stock-market investments.  This eerie sensation of 

low-  background shadow-risk cannot easily be articulated, yet it frightens people away fromδ
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taking a more aggressive stance in equities and scares them into a position of wanting to hold

instead some safer stores of value such as gold, cash, real goods, or government treasury bills – 

as a hedge against low-consumption states.  Consequently, such safe assets bear very low, even

negative, rates of return.

I do not believe that it will be easy to dismiss such type of Bayesian statistical explanation

for the equity premium puzzle.  After all, the qualitative fact that  is positive comes as noΕ[re]&rf

surprise, just from first principles of risk aversion.  The equity premium puzzle is the quantitative

paradox that the observed value of    is too big to be reconciled with the standardΕ[re]&rf

neoclassical stochastic growth paradigm.  But compared with what is the observed value of

  “too big”?   The answer given in the equity-premium literature is: “compared with theΕ[re]&rf

right hand side of formula (19).”  Unfortunately for this logic, the right hand side of (19) is in

practice a very bad estimate of the true value of  as given by equations (13) or (16). Ε[re]&rf

Anyone wishing to downplay this line of reasoning in favor of the status quo ante would be hard

pressed to come up with their own Bayesian rationale for calibrating variances of non-observable

subjectively-distributed future growth rates by point estimates equal to past sample averages.

 In effect, the frequentist-inspired literature that produces the family of equity puzzles

avoids the consequences on expected utility of non-uniform convergence (in n, for any positive

) only by imposing the pointwise-convergent extreme case  right from the beginning. δ m'4

Given any model of utility, it is well known that in principle there exist subjective probabilities

that can produce the necessary marginal-utility state shadow-weights to “explain” the observed

prices of traded financial assets.  The interesting question then becomes: are these subjective

probabilities sufficiently close to objective probabilities to be plausible?  The existing literature

errs by attempting to address this question in the non-relevant space of observed past

consumption, where the answer is negative, instead of in the relevant space of non-observed

expected utility of subjectively-distributed future consumption, where the answer is positive.

We are witnessing growth data from the past that look as if they are normally distributed

with mean   and variance  .  But the corresponding Bayesian posterior distribution, which isĝ V̂

required to evaluate properly the true impact of risk aversion embodied in Theorem 1, indicates

that the all-important difference is an unnoticeable (for large ) upward adjustment in them%n
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probabilities of the higher-variance scenarios.  Theorem 1 says that once we compute the

Bayesian equity premium rigorously, then the paradox recedes.  The underlying statistical reason

is that, with less than an infinite amount of data, the t-like part of the probability density function

(33) has a sufficiently plump tail to make very dramatic the Bayesian expected-utility

implications of model uncertainty  –  as captured here by uncertain structural parameter values. 

The theme of this paper is that model uncertainty drives the entire family of equity ‘puzzles,’

which gives rise to a very different world view than the picture that emerges, e.g.,  from just

plugging into the equity-premium formula (13) a normal distribution whose variance is point-

calibrated to past values.

In a well known attempt to explain the equity premium puzzle, Rietz (1988) argues that

we cannot exclude the possibility that our sample size is not large enough to describe adequately

the full macroeconomic risk.  The impact on financial equilibrium of a situation where there is a

tiny probability of a catastrophic out-of-sample event has been dubbed the “peso problem.”  In a

peso problem, the small probability of a disastrous future happening (like a collapse of the

presumed structure) is taken into account by real-world investors (in the form of a “peso

premium”) but not by the model, because such an event is not in the sample.  The fault is not

really with the model, so to speak, but rather the fault is that the modeler is “forcing” the

objective rational-expectations sample variance of past growth rates to stand in for the overall

risk-adjusted effects on expected utility of a subjectively uncertain future growth process. 

For the model of this paper, such “forcing” by the modeler is a harmless approximation

for the near-center of the posterior distribution, which represents the  pure rational-m%n'4

expectations stochastic scenario familiar from the literature.  But as one moves ever further away

from mid-range point estimates of structural parameters into the tails of a rigorous Bayesian

treatment of structural parameter uncertainty, the normal approximation for the case m%n<4

becomes increasingly untenable.  Concerning applications to calculating the equity premium or

the risk-free interest rate, a normal distribution of past growth rates is a terrible approximation for

evaluating the appropriate t-like subjective Bayesian posterior distribution of future growth rates.

I think Theorem 1 is trying to tell us that a statistical analogue of the peso problem may be

generically ingrained in the “deep structure” of how Bayesian inferences about exponential
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5 The results in Schwarz (2000) can be interpreted as essentially characterizing the class
of such fat-tailed posterior distributions under minimally restrictive assumptions on the prior.

processes (of future economic growth, at unknown rates) interact with a curved utility function. 

Bayesian inferences from finite data fatten the posterior tails of probability density functions, as

the example of replacing the workhorse normal distribution by its t-like posterior distribution

demonstrates with dramatic consequences (when expressed in units of expected marginal utility). 

This “Bayesian-statistical peso problem” means that it is not so absurd to believe that no finite

sample size is large enough to capture all of the relevant structural model uncertainty concerning

future economic growth.  I think the Bayesian peso problem is trying to tell us that to calibrate an

exponential process having an uncertain growth rate, which is essentially intended to describe

future worldwide economic prospects, by plugging the sample variance of observed growth rates

from the past into a “very bad” approximation of the subjectively-distributed future growth rate,

is to underestimate “very badly” how much more risky is a real world gamble on the state of the

future economy, when compared with a safe investment in a near-money sure thing.

Of course, what is being presented here is just one illustrative example of the economic

consequences of such a tail-fattening effect.  Other examples with other probability distributions

may have less (or more) dramatic consequences, but I believe that it is very difficult to get around

the moral of this story.  For any chosen value of m, however large, the effects of Bayesian tail-

fattening will cause the equity premium to be highly sensitive to seemingly innocuous and

negligible changes in the assumed prior of the precision – within a very broad class of reasonable

probability distributions obeying standard regularity conditions.5  The driving statistical-economic

force is that seemingly thin-tailed probability distributions, which actually are only thin-tailed

conditional on known structural parameters of the model, tend to become thick-tailed after

integrating out the prior parameter uncertainty.  Furthermore, such thick-tailed subjective

posterior distributions are decisively important in influencing behavior towards risk (as embodied

in expected utility calculations).  When investors are modeled as perceiving and acting upon these

thick-tailed subjective posterior distributions, a fully-rational general-equilibrium interpretation

then has sufficient explanatory power to be able to weave together a unified Bayesian theory of

the entire family of equity ‘puzzles,’ as the next three sections of the paper will demonstrate.
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Φ(δ) / ρ % θΕ[g] & ln m
4

&4

exp(&θy) fn(y*δ,m) dy . (42)

rf ' Φ(δf) . (43)

Φ(0) < rf < Φ(4) , (44)

5.  The Bayesian Risk-Free Rate

We can use the same mathematical-statistical apparatus to calculate the Bayesian risk-free

interest rate.  For fixed m and n, let   be the value of   as a function of   that comes out ofΦ(δ) rf δ

formulas (12) or (20) when the probability density function is given by equation (33), which is the

Bayesian posterior distribution that is consistent with the rest of the model.  Plugging (33) into the

right hand side of equation (12), the result is

We then have the following proposition.

Theorem 2   Suppose  and   .  Let    be any value of the risk-free interestθ>0 m%n<4 rf

rate that satisfies  .  Then there exists a positive  such thatrf < ρ%θĝ δf

Proof:    It was already shown in the course of proving Theorem 1 that, from (39), as  isδ

made to approach zero, the integral in the right hand side of (42) becomes unbounded.  Therefore,

.  At the other extreme of  is the deterministic Ramsey formula .  Thus,Φ(0)'&4 δ Φ(4)'ρ%θΕ[g]

and, since  defined by (42) is continuous in , the conclusion (43) follows.   Φ(δ) δ ~

The discussion of Theorem 2 so closely parallels the discussion of Theorem 1 that it is

largely omitted in the interest of space.  The driving mechanism again is that the random variable

of subjective future growth rates behaves somewhat like a t statistic in its tails and carries with it

a potentially explosive moment generating function reflecting very strong aversion to high-

volatility low-precision situations.  The bottom line once more is that the “Bayesian peso

problem” causes classical-like rational-expectations inferences, which are based upon the
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re&Ε[re] ' g&Ε[g] . (45)

observed historical behavior of past growth rates, to underestimate greatly just how much more

uncertain than riskless stores of value is a real-world Bayesian gamble on the state of the future

world economy.

6.  Bayesian Excess Volatility

The methodology in this section of the paper unavoidably stretches the mind more than

what was previously encountered, because we are forced now to confront critical modeling issues

previously evaded.  The empirical existence of a significant equity volatility puzzle signals that

the standard model of this paper may be mis-specified right from its first postulate. To see this,

rewrite the basic starting equation (2) of the model for the case a=e of a comprehensive economy-

wide equity index where .  In this special case, (2) becomesha(g)'g

Clearly, equation (45) cannot be interpreted as being literally correct in a frequentist sense

because of the substantial mismatch between the observed variances of the two random variables 

 and g appearing on alternate sides of the same equality sign.  We are now forced to unscramblere

the precise Bayesian interpretation of what it means operationally for equation (45) to be “true” or

“false” in a general equilibrium setting where the growth rate of future consumption is

subjectively distributed.  The excess volatility puzzle says that, empirically,  is about anσ[re]

order of magnitude larger than .  How can equation (45) possibly be “true” in the presence ofσ[g]

such a seemingly irreconcilable observational disparity?  The answer here lies in the fact that, for

this model, g is an unobservable random variable, whose risk-transformed utility-adjusted

subjective variability may be very different from its observed sample variability.  The Euler

equation, after all, imposes restrictions upon expectations of future marginal-utility-weighted

equity returns, not upon past realizations of growth rates or equity returns per se.

I now present two not-directly-verifiable subjective “stories” about future economic

growth prospects, both of which will turn out to “fit” the stylized facts equally well.  The

backdrop for both stories begins with the fact that g is subjective and unobservable.  So far as the
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r1 ' y1 % {ρ%θΕ[g]&ln Ε[exp(y1&θx)]} , (46)

first moment of g is concerned, we know that  from (24) and (25).  However, we are quiteΕ[g]'ĝ

unsure about how to represent the second moment of g.  We know empirically that the variability

in equity returns greatly exceeds the variability in growth rates, thereby causing an excess-

volatility puzzle concerning how to interpret (45). What we do not yet know or understand is how

to conceptualize the second moment of g in a way that resolves the paradox of (45).   The

question is: can we tell a rigorously-consistent Bayesian story (here it will actually be two stories)

that might “explain” the connection described by (45) between the non-observable variability of

subjective future growth rates and the observed frequency-measured variability of past equity

returns?

Subjective story #1 might be called the engineered equity variability story about why the

observed variability of equity returns might be so much larger than the observed variability of

growth rates.  Subjective story #1 begins with the idea that, since nobody in this endowment-

exchange economy actually ends up taking a position in equity anyway, at least in principle we

are free to posit exogenously any state-contingent payoff-producing mechanism we like for stock-

market shares.  Behind the scene, such a payoff process can be engineered and priced to yield

returns that are distributed as the payoff function, plus some constant.  With this engineered

equity variability story, stocks are no longer direct one-for-one claims on future consumption.  In

this subjective story #1, stocks are hypothetical claims, which are available in zero net supply, on

future payoffs with a known engineered equity variability.

Continuing with subjective story #1, let the payoff function be  .  Applying theh1(g)

fundamental equations (10) and (11) to this situation generates an equilibrium distribution of the

return on equity  , which is given as some probability density function  defined byr1 ψ1(r1)

where  and .  In this story # 1, therefore, the variability of equity returns x'g&Ε[g] y1'h1&Ε[h1]

  is derived by construction from the more basic variability of the engineered payoff process σ[r1]

.σ[h1]

An alternative interpretation, subjective story #2, might be called the inherent growth
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r2 ' x2 % {ρ%θΕ[g2]&ln Ε[exp((1&θ)x2)]} , (47)

Ε[g2] ' Ε[g] , (48)

ψ2(r) ' ψ1(r) . (49)

variability story about why the observed variability of equity returns might be so much larger

than the observed variability of growth rates.  Subjective story #2 begins by having the non-

observable future growth rate be denoted by the random variable , where  the relationshipg2

between the random variables  and  remains yet to be determined.  In this subjective story #2,g2 g

the equity market is perceived by investors as being a broad-based representation of the entire

economy, meaning the corresponding payoff function is  .  Applying the fundamentalh2(g2)'g2

equations (10) and (11) to this situation generates an equilibrium distribution of the return on

equity , which is given as some probability density function  defined byr2 ψ2(r2)

where, in this inherent growth variability story, .  From examining (47), it follows atx2'g2&Ε[g2]

once that (45) must hold with .  Therefore, and importantly, in subjective story #2 there'r2, g'g2

variability of returns on equity  equals the variability of the non-observable subjectively-σ[r2]

distributed future growth rate  by construction.σ[g2]

We will say that the above two stories about the not-directly-observable variability of

subjectively-distributed future growth process are observationally equivalent if they generate the

same expected growth rate, so that

and if they generate the same distribution of equity returns, so that, for all r,

From comparing (46) with (47) in the light of (48) and (49), it is relatively straightforward

to show that the engineered equity variability story is observationally equivalent to the inherent

growth variability story whenever  andx2'y1
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Ε[exp(y1&θx1)]} ' Ε[exp((1&θ)y1)] . (50)

y1(x*S) ' h1(x%Ε[g]*S) & Ε[h1(x%Ε[g]*S)] (51)

y1 - Ν(0, S 2) , (52)

dy1

dx
'

fn(x*δ,m) 2π S

exp(&y 2
1 /2S 2)

(53)

From this point forward, considerable conceptual advantage, not to mention computational

convenience, come from further restricting the unconditional distribution of (continuously

compounded) equity returns to be a normal random variable with known standard deviation S. 

Such normality of equity returns is the benchmark case assumed in most studies of asset pricing

(including almost all expositions of the equity family of puzzles) and it is consistent with the

empirically observed low-frequency behavior of a comprehensive stock market index measured

over discrete time periods of a year or more.  We now engineer a state-contingent payoff process

via change of variables so that the probability density function of the growth rate g is transformed

into a payoff , which is normally distributed with standard deviation S.  Theh1(g*S)

corresponding engineered relationship between  and x is then described by the equationy1

for some payoff function  whereh1(x%Ε[g]*S)

and S is the standard deviation, to be subsequently determined endogenously as a function of .δ

Given   and the normal specification (52), the Jacobian inverse-function formulafn(x*δ,m)

applied to (51), (52) implies that   is the unique solution of the differential equationy1(x*S)

with the initializing boundary condition  .y1(0*S) ' 0

The third and final theorem of the paper shows that there is a value of  that causes theδ
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m
4

&4

exp(y1(x*S(δ))&θx) fn(x*δ,m) dx ' exp(½(1&θ)2S(δ)2) . (54)

S(δv) ' σ[re] , (55)

g2 - Ν(ĝ, σ2[re]) . (56)

S(4) < σ[re] < S(0) , (57)

standard deviation of the subjectively-estimated future growth rate in story #2 to equal any given

standard deviation of equity returns, and which is operationally indistinguishable from what

financial engineering can accomplish in story #1.  Thus, not only are parameter values of δ

capable in principle of explaining the equity premium and the risk-free rate for this model, but,

with the unconditional-normality assumption for equity returns, the following possibility theorem

shows that  is also capable of explaining rigorously the observed volatility of the stock marketδ

itself in a way that is consistent with the centerpiece equation (45) of the theory being satisfied.

Theorem 3:  Suppose  and assume that the distribution of returns on equity  ism%n<4 re

normally distributed with any known positive standard deviation .  Define the function σ[re] S(δ)

to be the particular value of S that implicitly satisfies equation (50) for the normal distribution

(52) (conditional on a given value of ), i.e.,δ

Then there exists some positive  such thatδv

and subjective story #1 is observationally equivalent to subjective story #2 with

Proof:   Setting  corresponds to a deterministic economy, in which case .  Atδ'4 S(4)'0

the opposite extreme, setting  causes the usual explosion of the integral on the left hand sideδ'0

of (54), implying for this case that .  The implication is thatS(0)'4
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σ̂[re]&σ̂[g] . S(δv)&σ[x] , (58)

and conclusion (55) then follows from continuity of the function .     S(δ) ~

The force behind Theorem 3 is the same force that is driving the previous two theorems:

intense aversion to the structural parameter uncertainty embodied in fat-tailed t-distributed

subjective future growth rates of consumption. Compared with the t-distribution  , ax-fn(x*0,m)

representative agent will always prefer –  for any finite S – the normal distribution

.  Theorem 3 results when the limiting explosiveness of the moment generatingx2'y1-Ν(0,S 2)

function of   is contained by the substitution of  with .fn(x*0,m) fn(x*δv,m) δv>0

To get a sharp mental image of what is happening here, perform the following thought

experiment.  Imagine drawing a future time-series data sample from the prototype limiting case of

the model where m is extremely big (but less than infinity), while simultaneously  is extremelyδ

small (but greater than zero).  In this limiting situation, the subjective distribution of the precision

of future growth rates is arbitrarily close to a point mass and remains almost unchanged as new

data arrive over time.  The subjective distribution of x has the t-like properties of (33), meaning

that the data being generated are statistically indistinguishable from a normal random variable

with standard deviation .  Simultaneously in this thought experiment, the observed timeσ̂[g]

series of equity returns is reconfirming (up to sampling error) that the distribution of  appears tore

be normal with standard deviation .  The excess volatility of equity being explainedS (δv)'σ[re]

theoretically by the model is  .  Therefore, sinceS(δv)&σ[x]

the observed excess volatility of equity matches what the theory predicts.

7.  Calibrating the Bayesian Model

Given , the model endogenously derives theoretical partial-equilibrium formulas forδ

three economic quasi-constants of interest:  the equity  premium as the function , the risk-Π(δ)

free rate as the function , and equity volatility as the function .  Theorem 1 proves theΦ(δ) S(δ)

existence of a   that makes   match the empirically-observed equity premium.  Theorem 2δe Π(δe)

proves the existence of a   that makes   match the empirically-observed risk-free rate. δf Φ(δf)
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Theorem 3 proves the existence of a   that makes   match the empirically-observedδv S(δv)

volatility of equity returns – in the context of an internally consistent observationally-equivalent

story about as-if-normally-distributed subjective future growth rates.

 The following empirical question then arises naturally from the three partial-equilibrium

theorems.  Can the same value of the exogenous primitive, , explain simultaneously theδ'δ(

actually-observed values of the three economic-financial variables, so that  , Ε[re]&rf . Π(δ()

, and  ?   In other words, can the three degrees of freedom representedrf . Φ(δ() σ[re] . S(δ()

by  , , and   be explained empirically by the one degree of freedom representedΠ(δ) Φ(δ) S(δ)

parsimoniously by  in this theory?  The answer is “yes,” which we now proceed to show.δ

As was explained in the previous section of the paper, equation (45) cannot literally be a

true frequency description because of the huge mismatch between the observed sample variances

of the two random variables g and .  Purely for analytical tractability, the model of this paperre

has treated structural parameter uncertainty only in its primitive driver, the growth rate.  To make

sense of (45) in such a model (whose stochastic equity returns are treated as being normally

distributed with known standard deviation ), we are allowed by a basic principle ofσ[re]

operationalism to choose the as-if interpretation of story #2 over the more conventional

interpretation of story #1.  If we want to conceptualize the non-observable subjective growth rate

of future consumption as if it is normally distributed, then in order to mesh seamlessly with

equation (45) its as-if standard deviation   should be calibrated so that  . σ[g2] σ[g2]'S(δ)'σ[re]

Such a state-price-deflated calibration to equity-lognormal units of subjective future consumption

is harmless, since it has no objectively-measurable consequences within this model-world. 

Choosing the interpretation of story #2 merely creates a convenient mental image for telling an

operationally equivalent as-if parable about (45) holding in terms of the universally familiar

normal probability distribution.

We now inquire whether the observationally-equivalent interpretation that the subjective

future growth rate g is distributed as if it were normal with standard deviation  renders alongS(δ)

with (45) a consistent as-if story connecting together the actual parameter values of our economic

world.  In the following table, parameter settings  have been selected that, I think, represent

values well within the “comfort zone” for most economists. All rates are real and represented by
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S(δv) ' 17% , (59)

Π(δv) ' (θ & ½) S 2(δv) ' 4.4% , (60)

annual values.  The data are intended to be a stylized approximation of what has been observed

for many countries over long periods of time.

Table 1.  Some Stylized Economic Facts

Quasi-Constant Parameter  Value
Mean arithmetic return on equity Ε[Re].7%

Arithmetic standard deviation of return on equity σ[Re].18%

Implied geometric standard deviation of return on equity σ[re].17%

Implied mean geometric return on equity Ε[re].5.5%

Risk-free interest rate rf.1%

Implied equity premium Ε[re]&rf.4.5%

Mean growth rate of per-capita consumption Ε[g].2%

Rate of pure time preference ρ.2%

Coefficient of relative risk aversion θ.2

The model is explaining endogenously three quasi-constants  , , and  asΠ(δ) Φ(δ) S(δ)

functions of the one positive parameter .  We do not observe the underlying primitive value of δ δ

directly, although we know that it is operationally indistinguishable from zero since  m64

implies .  However, and more usefully,   can be calibrated indirectly by setting any one ofδ60% δ

the  three quasi-constants  , , and  equal to its observed value in Table 1 and thenΠ(δ) Φ(δ) S(δ)

backing out the implied values of the other two by using the as-if-lognormal formulas (19) and

(25).

Defining   to be the implicit solution ofδv

we then have, from (19) with ,V̂'S 2[δv]
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Φ(δv) ' ρ % θΕ[X] & ½θ2S 2(δv) ' 0.2% . (61)

Π(δe) ' 4.5% , (62)

Φ(δe) ' ρ % θΕ[X] & θ2Π(δe)/(2θ&1) ' 0% , (63)

S(δe) ' 2Π(δe)/ 2θ&1 ' 17% . (64)

Φ(δf) ' 1% , (65)

Π(δf) ' (2θ&1)/θ2 [ρ % θΕ[g] & Φ(δf)] ' 3.8% , (66)

S(δf) ' 2/θ ρ%θΕ[g]&Φ(δf) ' 16% . (67)

and, from (25) with ,V̂'S 2[δv]

Defining   to be the implicit solution ofδe

we then have, from (25) and (19),

and, from (19) with ,V̂'S 2[δe]

Defining   to be the implicit solution ofδf

we then have, from (25) and (19), 

and, from (25) with ,V̂'S 2[δf]



13.01.05    A Unified Bayesian Theory of Equity ‘Puzzles’  page 36

As a rough test for overall consistency and raw fit, the results of these Bayesian as-if-

lognormal calibration exercises speak for themselves.

8.  Conclusion

The -theory model of this paper is predicting that, when viewed through the lens of theδ

standard frequentist calibration paradigm, there will simultaneously appear to be an “excess

volatility puzzle,” a “risk-free rate puzzle,” and an “equity premium puzzle,” whose magnitudes

of discrepancy are very close numerically to what is actually observed in the data.  This paper

shows that such numerical “discrepancies” are puzzles, however, only when seen through a non-

Bayesian lens.  From a Bayesian perspective, the “puzzling” numbers being observed in the data

are telling an internally-consistent rational story about the implicit prior distribution of

background structural-parameter uncertainty that is generating such data.

In principle, consumption-based representative-agent models provide a complete answer

to all asset pricing questions and give a unified theory integrating together the economics of

finance with the real economy.  In practice, consumption-based representative-agent models with

standard preferences and a traditional degree of relative risk aversion work poorly when the

variance of the growth of future consumption is point-calibrated to the sample variance of its past

values.  The theme of this paper is that there is an internally consistent theoretical justification for

treating the non-observable variance of the subjective future growth rate as if it were equal to the

observed variance of a comprehensive economy-wide index of asset returns, for which

interpretation the simple standard neoclassical model has the potential to work well in practice.
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