
 

PART IV: THE 1963 MODEL OF PRICE CHANGE

My efforts to improve on Bachelier's Brownian model started with markets on
which the dominant factor is the highly nonGaussian nature of the distribution's
tails. In IBM Report NC-87, “The Variation of certain speculative prices,
published on March 26, 1962, the title pointedly meant not necessarily all. For
external publication, the hefty NC-87 was split. Its core became M 1963b{E14},
which is the centerpiece of this part. My interests having changed, what was left
of NC-87 appeared years later, as M 1967b{E15}; this awkward composite adds
some data on cotton and continues with wheat, railroad securities and interest
rates, but also includes answers to criticism of M 1963b{E14} and other material
that made the text closer to being self-contained. A final small piece from NC-87
is published for the first time as Pre-publication Appendix I to Chapter E14. 
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The variation of certain speculative prices

✦ Pre-publication abstract (M 1962a). The classic model of the temporal
variation of speculative prices (Bachelier 1900) assumes that successive
changes of a price Z(t) are independent Gaussian random variables. But,
even if Z(t) is replaced by log Z(t), this model is contradicted by facts in
four ways, at least:
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(1) Large price changes are much more frequent than predicted by the
Gaussian; this reflects the “excessively peaked” (“leptokurtic”) character of
price relatives, which has been well-established since at least 1915.

(2) Large practically instantaneous price changes occur often, contrary
to prediction, and it seems that they must be explained by causal rather
than stochastic models.

(3) Successive price changes do not “look” independent, but rather
exhibit a large number of recognizable patterns, which are, of course, the
basis of the technical analysis of stocks.

(4) Price records do not look stationary, and statistical expressions such
as the sample variance take very different values at different times; this
nonstationarity seems to put a precise statistical model of price change out
of the question.

I shall show that there is a simple way to solve difficulties (1), (2) and
(4), and – to some extent – difficulty (3). This will imply that it is not nec-
essary to give up the stationary stochastic models. Suppose indeed that
the price relatives are so extremely leptokurtic (1), as to lead to infinite
values for the population variance, and for other population moments
beyond the first. This could – and indeed does – explain the erratic
behavior of the sample moments (4), and the sample paths generated by
such models would indeed by expected to include large discontinuities (2).
Additionally, some features of the dependence between successive changes
(3) could be taken into account by injecting a comparatively limited weak-
ening asymptotic? of the hypothesis of independence; that is, “patterns”
that have such a small probability in a Gaussian function that their occur-
rence by chance is practically impossible, now acquire a credibly large
probability of occurring by chance.

As known in the case of the Cauchy distribution, having an infinite
variance does not prevent a distribution from being quite proper, but it
does make it quite peculiar. For example, the classical central limit
theorem is inapplicable, and the largest of M addends is not negligibly
small but rather provides an appreciable proportion of their sum. Fortu-
nately, these peculiar consequences actually happen to describe certain
well-known features of the behavior of prices.

The basic distribution with an infinite variance is scaling with an
exponent between 1 and 2. My theory of prices is based upon distrib-
utions with two scaling tails, as well as upon L-stable distributions. The
latter are akin to the scaling law, and appear in the first significant gener-
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alization of the classical central limit theorem. My theory is related to my
earlier work on the distribution of personal income. ✦

 I. INTRODUCTION

Louis Bachelier is a name mentioned in relation to diffusion processes in
physics. Until very recently, however, few people realized that his path-
breaking contribution, Bachelier 1900, was a by-product of the construction
of a random-walk model for security and commodity markets. Let Z(t) be
the price of a stock, or of a unit of a commodity, at the end of time period
t. Then, Bachelier's simplest and most important model assumes that suc-
cessive differences of the form Z(t + T) − Z(t) are independent Gaussian
random variables with zero mean and with variance proportional to the
differencing interval T.

That simplest model implicitly assumes that the variance of the differ-
ences Z(t + T) − Z(t) is independent of the level of Z(t). There is reason to
expect, however, that the standard deviation of ∆Z(t) will be proportional
to the price level, which is why many authors suggest that the original
assumption of independent increments of Z(t) be replaced by the assump-
tion of independent and Gaussian increments of logeZ(t).

Despite the fundamental importance of Bachelier's process, which has
come to be called “Brownian motion,” it is now obvious that it does not
account for the abundant data accumulated since 1900 by empirical econo-
mists. Simply stated, the empirical distributions of price changes are usually too
“peaked” to be viewed as samples from Gaussian populations. To the best of
my knowledge, the first to note this fact was Mitchell 1915. But unques-
tionable proof was only given by Olivier 1926 and Mills 1927. Other evi-
dence, regarding either Z(t) or log Z(t), can be found in Larson 1960,
Osborne 1959 and Alexander 1961.

That is, the histograms of price changes are indeed unimodal and their
central “bells” are reminiscent of the “Gaussian ogive.” But there are typi-
cally so many “outliers” that ogives fitted to the mean square of price
changes are much lower and flatter than the distribution of the data them-
selves (see, Fig. 1). The tails of the distributions of price changes are in
fact so extraordinarily long that the sample second moments typically vary
in an erratic fashion. For example, the second moment reproduced in
Figure 2 does not seem to tend to any limit even though the sample size is
enormous by economic standards.
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It is my opinion that these facts warrant a radically new approach to
the problem of price variation in speculative markets. The purpose of this
paper will be to present and test a new model that incorporates this belief.
(A closely related approach has also proved successful in other contexts;
see M 1963e{E3}. But I believe that each of the applications should stand
on their own feet and I have minimized the number of cross references.

The model I propose begins like the Bachelier process as applied to
logeZ(t) instead of Z(t). The major change is that I replace the Gaussian
distribution throughout by “L-stable,” probability laws which were first
described in Lévy 1925. In a somewhat complex way, the Gaussian is a
limiting case of this new family, so the new model is actually a generaliza-
tion of that of Bachelier.

Since the L-stable probability laws are relatively unknown, I shall
begin with a discussion of some of the more important mathematical prop-
erties of these laws. Following this, the results of empirical tests of the
L-stable model will be examined. The remaining sections of the paper will

FIGURE C14-1. Two histograms illustrating departure from normality of the fifth
and tenth difference of monthly wool prices, 1890-1937. In each case, the con-
tinuous bell-shaped curve represents the Gaussian “interpolate” from
− 3σ to 3σ based upon the sample variance. Source: Tintner 1940.
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then be devoted to a discussion of some of the more sophisticated math-
ematical and descriptive properties of the L-stable model. I shall, in par-
ticular, examine its bearing on the very possibility of implementing the
stop-loss rules of speculation.

II. MATHEMATICAL TOOLS: L-STABLE DISTRIBUTIONS

FIGURE C14-2. Both graphs represent the sequential variation of the sample
second moment of cotton price changes. The horizontal scale represents time
in days, with two different origins T0. On the upper graph, T0 was September
21, 1900; on the lower graph, T0 was August 1, 1900. The vertical lines repre-
sent the value of the function

(T − T0)
− 1�

t = T

t = T0

L(t, 1)
2
,

where L(t, 1) = logeZ(t + 1) − logeZ(t) and Z(t) is the closing spot price of cotton
on day t. I am grateful to the United States Department of Agriculture for
making these data available.
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II.A. “L-stability” of the Gaussian distribution and generalization of the
concept of L-stability

One of the principal attractions of the modified Bachelier process is that
the logarithmic relative

L(t, T) = logeZ(t + T) − logeZ(t),

is a Gaussian random variable for every value of T; the only thing that
changes with T is the standard deviation of L(t, T). This feature is the con-
sequence of the following fact:

Let G′ and G′′ be two independent Gaussian random variables, of zero means
and of mean squares equal to σ′2 and σ′′2, respectively. Then the sum G′ + G′′ is
also a Gaussian variable of mean square equal to σ′2 + σ′′2. In particular, the
“reduced” Gaussian variable, with zero mean and unit square, is a solution to

s′U + s′′U = sU,(S)

where s is a function of s′ and s′′ given by the auxiliary relation

s2 = s′2 + s′′2.(A2)

It should be stressed that, from the viewpoint of the equation (S) and
relation A2, the quantities s′, s′′, and s are simply scale factors that
“happen” to be closely related to the root-mean-square in the Gaussian
case.

The property (S) expresses a kind of L-stability or invariance under
addition, which is so fundamental in probability theory that it came to be
referred to simply as L-stability. The Gaussian is the only solution of
equation (S) for which the second moment is finite – or for which the
relation A2 is satisfied. When the variance is allowed to be infinite,
however, (S) possesses many other solutions. This was shown construc-
tively by Cauchy, who considered the random variable U for which

Pr {U > u} = Pr{U < − u} = 1/2 − (1/π)tan− 1u,

so that its density is of the form

d Pr{U < u} = 1
π(1 + u2)

.
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For this law, integral moments of all orders are infinite, and the auxiliary
relation takes the form

s = s′ + s′′,(A1)

where the scale factors s′, s′′, and s are not defined by any moment.

The general solution of equation (S) was discovered by Lévy 1925.
(The most accessible source on these problems is, however, Gnedenko &
Kolmogorov 1954.) The logarithm of its characteristic function takes the
form

log ⌠⌡
∞

−∞
exp(iuz)d Pr{U < u} = iδz − γ 

 
z 

 α⎧
⎨
⎩
1 +

iβz
 
z 

tan απ
2

⎫
⎬
⎭
.(L)

It is clear that the Gaussian law and the law of Cauchy are stable and
that they correspond to the cases (α = 2; β arbitrary) and (α = 1; β = 0),
respectively.

Equation (L) determines a family of distribution and density functions
Pr{U < u} and d Pr{U < u} that depend continuously upon four parameters.
These four parameters also happen to play the roles the Pearson classifica-
tion associates with the first four moments of U.

First of all, the α is an index of “peakedness” that varies in ]0, 2], that
is, from 0 (excluded) to 2 (included). This α will turn out to be intimately
related to the scaling exponent. The β is an index of “skewness” that can
vary from − 1 to + 1, except that, if α = 1, β must vanish. If β = 0, the
stable densities are symmetric.

One can say that α and β together determine the “type” of a stable
random variable. Such a variable can be called “reduced” if γ = 1 and
δ = 0. It is easy to see that, if U is reduced, sU is a stable variable with the
same α, β and δ, and γ equal to sα. This means that the third parameter, γ,
is a scale factor raised to the power of α. Suppose now that U′ and U′′ are
two independent stable variables, reduced and having the same values for
α and β. It is well-known that the characteristic function of s′U′ + s′′U′′ is
the product of those of s′U′ and of s′′U′′. Therefore, the equation (S) is
readily seen to be accompanied by the auxiliary relation

sα = s′α + s′′α.(A)
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More generally, suppose that U′ and U′′ are stable, have the same values
of α, β and of δ = 0, but have different values of γ (respectively, γ′ and γ′′),
the sum U′ + U′′ is stable and has the parameters α, β, γ = γ′ + γ′′ and δ = 0.
Now recall the familiar property of the Gaussian distribution, that when
two Gaussian variables are added, one must add their “ variances.” The
variance is a mean-square and is the square of a scale factor. The role of a
scale factor is now played by γ, and that of a variance by a scale factor
raised to the power α.

The final parameter is δ; strictly speaking, equation (S) requires that
δ = 0, but we have added the term iδz to (PL) in order to introduce a
location parameter. If 1 < α ≤ 2, so that E(U) is finite, one has δ = E(U). If
β = 0, so that the stable variable has a symmetric density function, δ is the
median or modal value of U. But when 0 < α < 1, with β ≠ 0, δ has no
obvious interpretation.

II.B. Addition of more than two stable random variables

Let the independent variables Un satisfy the condition (PL) with values of
α, β, γ, and δ equal for all n. The logarithm of the characteristic function
of

SN = U1 + U2 + ...Un + ...UN

is N times the logarithm of the characteristic function of Un, and equals

i δNz − Nγ 
 
z 

 α
1 + iβ(z/ 

 
z 

 
)tan(απ/2) .

Thus SN is stable with the same α and β as Un, and with parameters δ and
γ multiplied by N. It readily follows that

Un − δ and N− 1/α�
N

n = 1

Un − δ

have identical characteristic functions and thus are identically distributed
random variables. (This is, or course, a most familiar fact in the Gaussian
case, α = 2.)

The generalization of the classical “T1/2 law.” In the Gaussian model of
Bachelier, in which daily increments of Z(t) are Gaussian with the
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standard deviation σ(1), the standard deviation of ∆Z(t), where ∆ is taken
over T days, is equal to σ(T) = T1/2σ(1).

The corresponding prediction of my model is as follows: Consider
any scale factor such as the intersextile range, that is, the difference
between the quantity U+ which is exceeded by one-sixth of the data, and
the quantity U− which is larger than one-sixth of the data. It is easily
found that the expected range satisfies

E  
 
U+(T) − U−(T)  = T1/αE  

 
U+(1) − U−(1)  .

We should also expect that the deviations from these expectations exceed
those observed in the Gaussian case.

Differences between successive means of Z(t). In all cases, the average of
Z(t), taken over the time span t0 + 1 to t0 + N, can be written as:

(1/N)  
 
Z(t0 + 1) + Z(t0 + 2) + ...Z(t0 + N)  

= (1/N){N Z(t0 + 1) + (N − 1)  
 
Z(t0 + 2) − Z(t0 + 1)  + ...

+ (N − n)  
 
Z(t0 + n + 1) − Z(t0 + n)  + ...  

 
Z(t0 + N) − Z(t0 + N − 1)  }.

To the contrary, let the average over the time span t0 − N + 1 to t0 be
written as

(1/N){N Z(t0) + (N − 1) Z(t0) − Z(t0 − 1) ...

+ (N − n) Z(t0 − n + 1) − Z(t0 − n) ...

+ Z(t0 − N + 2) − Z(t0 − N + 1) }.

Thus, if the expression Z(t + 1) − Z(t) is a stable variable U(t) with δ = 0,
the difference between successive means of values of Z is given by

U(t0) +  
 
(N − 1)/N   

 
U(t0 + 1) + U(t0 − 1)  

+ ...  
 
(N − n)/N   

 
U(t0 + n) + U(t0 − n)  

+ ...  
 
U(t0 + N − 1)...U(t0 − N + 1)  .

This is clearly a stable variable, with the same α and β as the original U,
and with a scale parameter equal to
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γ0(N) =  
 
1 + 2(N − 1)αN− α + ...2(N − n)αN− α + ... + 2  γ(U).

As N → ∞, one has

 
γ0(N)
γ(U)

→ 2N
(α + 1)

,

whereas a genuine monthly change of Z(t) has a parameter γ(N) = Nγ(U).
Thus, the effect of averaging is to multiply γ by the expression 2/(α + 1),
which is smaller than 1 if α > 1.

III.C. L-stable distributions and scaling

Except for the Gaussian limit case, the densities of the stable random vari-
ables follow a generalization of the asymptotic behavior of the Cauchy
law. It is clear, for example, that as u → ∞, the Cauchy density behaves as
follows:

u Pr{U > u} = u Pr{U < − u} → 1/π.

More generally, Lévy has shown that the tails of all nonGaussian stable
laws follow an asymptotic form of scaling. There exist two constants,
C′ = σ′α and C′′ = σ′′α, linked by β = (C′ − C′′)/(C′ + C′′), such that,

when u → ∞, uαPr{U > u} → C′ = σ′α and uαPr{U < − u} → C′′ = σ′′α.

Hence, both tails are scaling if β ≠ 1, a solid reason for replacing the
term “stable nonGaussian” by the less negative one of “L-stable.” The two
numbers σ′ and σ′′ share the role of the standard deviation of a Gaussian
variable. They will be denoted as the “standard positive deviation” and
the “standard negative deviation,” respectively.

Now consider the two extreme cases: when β = 1, hence C′′ = 0, and
when β = − 1, hence C′ = 0). In those cases, one of the tails (negative and
positive, respectively) decreases faster than the scaling distribution of
index α. In fact, one can prove (Skorohod 1954-1961) that the short tail
withers away even faster that the Gaussian density so that the extreme
cases of stable laws are, for all practical purposes, J-shaped. They play an
important role in my theory of the distributions of personal income and of
city sizes. A number of further properties of L-stable laws may therefore
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be found in my publications devoted to these topics. See M 1960i{E10},
1963p{E11} and 1962g{E12}.

II.D. The L-stable variables as the only possible limits of weighted sums
of independent, identically distributed addends

The L-stability of the Gaussian law can be considered to be only a matter
of convenience, and it often thought that the following property is more
important.

Let the Un be independent, identically distributed random variables, with a
finite σ2 = E Un − E(U)

2
. Then the classical central limit theorem asserts that

lim
N →∞

N− 1/2σ− 1�
N

n = 1

Un − E(U)

is a reduced Gaussian variable.

This result is, of course, the basis of the explanation of the presumed
occurrence of the Gaussian law in many practical applications relative to
sums of a variety of random effects. But the essential thing in all these
aggregative arguments is not that ∑ Un − E(U)  is weighted by any
special factor, such as N− 1/2, but rather that the following is true:

There exist two functions, A(N) and B(N), such that, as N → ∞, the
weighted sum

A(N)�
N

n = 1

Un − B(N),(L)

has a limit that is finite and is not reduced to a nonrandom constant.

If the variance of Un is not finite, however, condition (L) may remain
satisfied while the limit ceases to be Gaussian. For example, if Un is stable
nonGaussian, the linearly weighted sum

N− 1/α�(Un − δ)

was seen to be identical in law to Un, so that the “limit” of that expression
is already attained for N = 1 and a stable nonGaussian law. Let us now
suppose that Un is asymptotically scaling with 0 < α < 2, but not stable.
Then the limit exists, and it follows the L-stable law having the same
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value of α. As in the L-stability argument, the function A(N) can be chosen
equal to N− 1/α. These results are crucial but I had better not attempt to
rederive them here. The full mathematical argument is available in the lit-
erature. I have constructed various heuristic arguments to buttress it. But
experience shows that an argument intended to be illuminating often
comes across as basing far-reaching conclusions on loose thoughts. Let me
therefore just quote the facts:

The Doeblin-Gnedenko conditions. The problem of the existence of a limit
for A(N)∑Un − B(N) can be solved by introducing the following generaliza-
tion of asymptotic scaling (Gnedenko & Kolmogorov 1954). Introduce the
notations

Pr{U > u} = Q′(u)u− α; Pr{U < − u} = Q′′(u)u− α.

The term Doeblin-Gnedenko condition will denote the following state-
ments: (a) when u → ∞, Q′(u)/Q′′(u) tends to a limit C′/C′′; (b) there
exists a value of α > 0 such that for every k > 0, and for u → ∞, one has

Q′(u) + Q′′(u)
Q′(ku) + Q′′(ku)

→ 1.

These conditions generalize the scaling distribution, for which Q′(u)
and Q′′(u) themselves tend to limits as u → ∞. With their help, and unless
α = 1, the problem of the existence of weighting factors A(N) and B(N) is
solved by the following theorem:

If the Un are independent, identically distributed random variables, there may
exist no functions A(N) and B(N) such that A(N)∑Un − B(N) tends to a proper
limit. But, if such functions A(N) and B(N) exist, one knows that the limit is
one of the solutions of the L-stability equation (S). More precisely, the limit is
Gaussian if, and only if, the Un has finite variance; the limit is nonGaussian if,
and only if, the Doeblin-Gnedenko conditions are satisfied for some 0 < α < 2.
Then, β = (C′ − C′′)/(C′ + C′′) and A(N) is determined by the requirement that

N Pr{U > uA− 1(N)} → C′u− α.

(For all values of α, the Doeblin-Gnedenko condition (b) also plays a
central role in the study of the distribution of the random variable
max Un.)
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As an application of the above definition and theorem, let us examine
the product of two independent, identically distributed scaling (but not
stable) variables U′ and U′′. First of all, for u > 0, one can write

Pr{U′U′′ > u} = Pr{U′ > 0; U′′ > 0; and log U′ + log U′′ > log u}
+ Pr{U′ < 0; U′′ < 0; and log

 
U′ + log

 
U′′ > log u}.

But it follows from the scaling distribution that

Pr{U > ez} ∼ C′ exp( − αz) and Pr{U < − ez} ∼ C′′ exp( − αz),

where U is either U′ or U′′. Hence, the two terms P′ and P′′ that add up to
Pr{U′U′′ > u} satisfy

P′C′2αz exp( − αz) and P′′C′′2αz exp( − αz).

Therefore,

Pr{U′U′′ > u} ∼ α(C′2 + C′′2)( logeu)u− α.

Similarly,

Pr{U′U′′ < − u} ∼ α2C′C′′( logeu)u− α.

It is obvious that the Doeblin-Gnedenko conditions are satisfied for the
functions Q′(u) ∼ (C′2 + C′′2)α logeu and Q′′(u) ∼ 2C′C′′α logeu. Hence the
weighted expression

(N log N)− 1/α�
N

n = 1

U′nU′′n

converges toward a L-stable limit with the exponent α and the skewness

β = C′2 + C′′2 − 2C′C′′
C′2 + C′′2 + 2C′C′′

= ⎡⎣
C′ − C′′
C′ + C′′

⎤
⎦

2 
≥ 0.

In particular, the positive tail should always be bigger than the negative
tail.
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II.E. Shape of the L-stable distributions outside the asymptotic range

There are closed expressions for three cases of L-stable densities: Gauss
(α = 2, β = 0), Cauchy (α = 1, β − 0), and third, (α = 1/2; β = 1). In every
other case, we only know the following: (a) the densities are always
unimodal; (b) the densities depend continuously upon the parameters; (c)
if β > 0, the positive tail is the fatter – hence, if the mean is finite (i.e., if
1 < α < 2), it is greater than the median.

To go further, I had to resort to numerical calculations. Let us,
however, begin by interpolative arguments.

The symmetric cases, β = 0. For α = 1, one has the Cauchy density
 
 
π(1 + u2)  

− 1
. It is always smaller than the scaling density 1/πu2 toward

which it converges as u → ∞. Therefore, Pr{U > u} < 1/π u, and it follows
that for α = 1, the doubly logarithmic graph of loge Pr{U > u}  is entirely
on the left side of its straight asymptote. By continuity, the same shape
must appear when α is only a little higher or a little lower than 1.

For α = 2, the doubly logarithmic graph of the Gaussian logePr{(U > u)}
drops very quickly to negligible values. Hence, again by continuity, the
graph must also begin with decreasing rapidly when α is just below 2.
But, since its ultimate slope is close to 2, it must have a point of inflection
corresponding to a maximum slope greater than 2, and it must begin by
“overshooting” its straight asymptote.

Interpolating between 1 and 2, we see that there exists a smallest value
of α, call it α∼ , for which the doubly logarithmic graph begins by over-
shooting its asymptote. In the neighborhood of α∼ , the asymptotic α can be
measured as a slope even if the sample is small. If α < α∼ , the asymptotic
slope will be underestimated by the slope of small samples; for α > α∼  it
will be overestimated. The numerical evaluation of the densities yields a
value of α∼  in the neighborhood of 1.5. A graphical presentation of the
results of this section is given in Figure 3.

The skew cases. If the positive tail is fatter than the negative one, it
may well happen that the doubly logarithmic graph of the positive tail
begins by overshooting its asymptote, while the doubly logarithmic graph
of the negative tail does not. Hence, there are two critical values of α0,
one for each tail. If the skewness is slight, if α lies between the critical
values, and if the sample size is not large enough, then the graphs of the
two tails will have slightly different overall apparent slopes.
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II.F. Joint distribution of independent L-stable variables

Let p 1(u 1) and p 2(u 2) be the densities of U 1 and of U 2. If both u 1 and u 2 are
large, the joint probability density is given by

p0(u1, u2) = αC′1u
− (α + 1)
1 αC′2u

− (α + 1)
2 = α2C′1C′2(u1u2)

− (α + 1).

The lines of equal probability belong to hyperbolas u1u2 = constant. They
link together as in Figure 4, into fattened signs + . Near their maxima,
logep 1(u 1) and logep 2(u 2) are approximated by α1 − (u 1/b 1)

2 and α2 − (u 2/b 2)
2.

Hence, the probability isolines are of the form

FIGURE C14-3. The various lines are doubly logarithmic plots of the symmetric
L-stable probability distributions with δ = 0, γ = 1, β = 0 and α as marked.
Horizontally: logeu; vertically: logePr{U > u} = logePr{U < − u}. Sources:
unpublished tables based upon numerical computations performed at the
author's request by the IBM T. J. Watson Research Center.
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(u 1/b 1)
2 + (u 2/b 2)

2 = constant.

The transition between the ellipses and the “plus signs” is, of course,
continuous.

II.G. Distribution of U1 when U1 and U2 are independent L-stable
variables and U1 + U2 = U is known

This conditional distribution can be obtained as the intersection between
the surface that represents the joint density p0(u1, u2) and the plane
u1 + u2 = u. Thus, the conditional distribution is unimodal for small u. For
large u, it has two sharply distinct maxima located near u1 = 0 and near
u2 = 0.

More precisely, the conditional density of U1 is given by
p 1(u 1)p 2(u − u 1)/q(u), where q(u) is the density of U = U 1 + U 2. Let u be posi-
tive and very large; if u1 is small, one can use the scaling approximations
for p 2(u 2) and q(u), obtaining

p 1(u 1)p 2(u − u 1)
q(u)

∼ C′1
C′1 + C′2

p 1(u 1).

If u2 is small, one similarly obtains

p 1(u 1)p 2(u − u 1)
q(u)

∼ C′2
(C′1 + C′2)

p 2(u − u 1).

In other words, the conditional density p1(u1)p2(u − u1)/q(u) looks as if two
unconditioned distributions, scaled down in the ratios C′1/(C′1 + C′2) and
C′2/(C′1 + C′2), had been placed near u1 = 0 and u1 = u. If u is negative, but
very large in absolute value, a similar result holds with C′′1 and C′′2
replacing C′1 and C′2.

For example, for α = 2 − ε and C′1 = C′2, the conditional distribution is
made up of two almost Gaussian bells, scaled down to one-half of their
height. But, as α tends toward 2, these two bells become smaller and a
third bell appears near u1 = u/2. Ultimately, the two side bells vanish,
leaving a single central bell. This limit corresponds to the fact that when
the sum U1 + U2 is known, the conditional distribution of a Gaussian U1 is
itself Gaussian.
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III. EMPIRICAL TESTS OF THE L-STABLE LAWS: COTTON PRICES

This section has two different aims. From the viewpoint of statistical eco-
nomics, its purpose is to motivate and develop a model of the variation of
speculative prices based on the L-stable laws discussed in the previous
section. From the viewpoint of statistics considered as the theory of data
analysis, it shows how I use the theorems concerning the sums ∑Un to
build a new test of the scaling distribution. Before moving on to the main
points of the section, however, let us examine two alternative ways of han-
dling the large price changes which occur in the data with frequencies not
accounted for by the normal distribution.

FIGURE C14-4. Joint distribution of successive price relatives L(t, 1) and L(t + 1, 1).

If L(t, 1) and L(t + 1, 1) are independent, their values should be plotted
along the horizontal and vertical coordinates axes.

If L(t, 1) and L(t + 1, 1) are linked by the model in Section VII, their values
should be plotted along the bisectors, or else the figure should be rotated by
45°, before L(t, 1) and L(t + 1, 1) are plotted along the coordinate axes.
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III.A. Explanation of large price changes as due to causal or random
“contaminators”

One very common approach is to note that, a posteriori, large price
changes are usually traceable to well-determined “causes,” and should be
eliminated before one attempts a stochastic model of the remainder. Such
preliminary censorship obviously brings any distribution closer to the
Gaussian. This is, for example, what happens when the study is limited to
“quiet periods” of price change. Typically, however, no discontinuity is
observed between the “outliers” and the rest of the distribution. In such
cases, the notion of outlier is indeterminate and arbitrary. above censor-
ship is therefore usually indeterminate.

Another popular and classical procedure assumes that observations
are generated by a mixture of two normal distributions, one of which has
a small weight but a large variance and is considered as a random
“contaminator.” In order to explain the sample behavior of the moments,
it unfortunately becomes necessary to introduce a larger number of
contaminators, and the simplicity of the model is destroyed.

III.B. Introduction of the scaling distribution to represent price changes

I propose to explain the erratic behavior of sample moments by assuming
that the corresponding population moments are infinite. This is an
approach that I used successfully in a number of other applications and
which I explained and demonstrated in detail elsewhere.

In practice, the hypothesis that moment are infinite beyond some
threshold value is hard to distinguish from the scaling distribution.
Assume that the increment, for example,

L(t, 1) = logeZ(t + 1) − logeZ(t)

is a random variable with infinite population moments beyond the first.
This implies that ∫p(u) u2du diverges but ∫p(u) udu converges (the integrals
being taken all the way to infinity). It is of course natural, at least in the
first stage of heuristic motivating argument, to assume that p(u) is
somehow “well-behaved” for large u. If so, our two requirements mean
that, as u → ∞, p(u)u3 tends to infinity and p(u)u2 tends to zero.

In other words: p(u) must somehow decrease faster than u− 2 and
slower than u− 3. The simplest analytical expressions of this type are
asymptotically scaling. This observation provided the first motivation of the
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present study. It is surprising that I could find no record of earlier applica-
tion of the scaling distribution to two-tailed phenomena.

My further motivation was more theoretical. Granted that the facts
impose a revision of Bachelier's process, it would be simple indeed if one
could at least preserve the following convenient feature of the Gaussian
model. Let the increments,

L(t, T) = logeZ(t + T) − logeZ(t),

over days, weeks, months, and years. In the Gaussian case, they would
have different scale parameters, but the same distribution. This distrib-
ution would also rule the fixed-base relatives. This naturally leads directly
to the probabilists' concept of L-stability examined in Section II.

In other words, the facts concerning moments, together with a desire
for a simple representation, led me to examine the logarithmic price rela-
tives (for unsmoothed and unprocessed time series relative to very active
speculative markets), and check whether or not they are L-stable. Cotton
provided a good example, and the present paper will be limited to the
examination of that case.

Additional studies. My theory also applies to many other commodities
(such as wheat and other edible grains), to many securities (such as those
of the railroads in their nineteenth-century heyday), and to interest rates
such as those of call or time money. These examples were mentioned in
my IBM Research Note NC-87 (dated March 26, 1962). Later papers {P.S.
1996: see M 1967j{E15}} shall discuss these examples, describe some prop-
erties of cotton prices that my model fails to predict correctly and deal
with cases when few “outliers” are observed. It is natural in these cases to
favor Bachelier's Gaussian model – a limiting case in my theory as well as
its prototype.

III.C. Graphical method applied to cotton price changes

Let us first describe Figure 5. The horizontal scale u of lines 1a, 1b, and 1c
is marked only on lower edge, and the horizontal scale u of lines 2a, 2b,
and 2c is marked along the upper edge.

The vertical scale gives the following relative frequencies:

⎧ 
⎨ 
⎩

(1a) Fr { logeZ(t + one day) − logeZ(t) > u},
(2a) Fr { logeZ(t + one day) − logeZ(t) < − u},(A)
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both for the daily closing prices of cotton in New York, 1900-1905.
(Source: the United Stated Department of Agriculture.)

⎧ 
⎨ 
⎩

(1b) Fr { logeZ(t + one day) − logeZ(t) > u},
(2b) Fr { logeZ(t + one day) − logeZ(t) < − u},(B)

both for an index of daily closing prices of cotton in the United States,
1944-58. (Source: private communication from Hendrick S. Houthakker.)

⎧ 
⎨ 
⎩

(1c) Fr { logeZ(t + one month) − logeZ(t) > u},
(2c) Fr { logeZ(t + one month) − logeZ(t) < − u},(C)

both for the closing prices of cotton on the 15th of each month in New
York, 1880-1940. (Source: private communication from the United States
Department of Agriculture.)

The theoretical log Pr{U > u}, relative to δ = 0, α = 1.7, and β = 0, is
plotted as a solid curve on the same graph for comparison.

If it were true that the various cotton prices are L-stable with δ = 0,
α = 1.7 and β = 0, the various graphs should be horizontal translates of
each other. To ascertain that, on cursory examination, the data are in close
conformity with the predictions of my model, the reader is advised to
proceed as follows: copy on a transparency the horizontal axis and the
theoretical distribution and to move both horizontally until the theoretical
curve is superimposed on one or another of the empirical graphs. The
only discrepancy is observed for line 2b; it is slight and would imply an
even greater departure from normality.

A closer examination reveals that the positive tails contain systemat-
ically fewer data than the negative tails, suggesting that β actually takes a
small negative value. This is confirmed by the fact that the negative tails,
but not the positive, begin by slightly “overshooting” their asymptote, cre-
ating the expected bulge.

III.D. Application of the graphical method to the study of changes in the
distribution across time

Let us now look more closely at the labels of the various series examined
in the previous section. Two of the graphs refer to daily changes of cotton
prices, near 1900 and 1950, respectively. It is clear that these graphs do
not coincide, but are horizontal translates of each other. This implies that
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between 1900 and 1950, the generating process has changed only to the
extent that its scale γ has become much smaller.

Our next test will concern monthly price changes over a longer time
span. It would be best to examine the actual changes between, say, the
middle of one month and the middle of the next. A longer sample is
available, however, when one takes the reported monthly averages of the
price of cotton; the graphs of Figure 6 were obtained in this way.

If cotton prices were indeed generated by a stationary stochastic
process, our graphs should be straight, parallel, and uniformly spaced.
However, each of the 15-year subsamples contains only 200-odd months,
so that the separate graphs cannot be expected to be as straight as those
relative to our usual samples of 1,000-odd items. The graphs of Figure 6
are, indeed, not quite as neat as those relating to longer periods; but, in
the absence of accurate statistical tests, they seem adequately straight and
uniformly spaced, except for the period of 1880-96.

FIGURE C14-5. Composite of doubly logarithmic graphs of positive and negative
tails for three kinds of cotton price relatives, together with a plot of the cumu-
lated density function of a stable distribution.
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I conjecture therefore, that, since 1816, the process generating cotton
prices has changed only in its scale, with the possible exception of the
periods of the Civil War and of controlled or supported prices. Long
series of monthly price changes should therefore be represented by mix-
tures of L-stable laws; such mixtures remain scaling. See M 1963e{E3}.

III.E. Application of the graphical method to study effects of averaging

It is, of course, possible to derive mathematically the expected distribution
of the changes between successive monthly means of the highest and
lowest quotation; but the result is so cumbersome as to be useless. I have,
however, ascertained that the empirical distribution of these changes does
not differ significantly from the distribution of the changes between the
monthly means, obtained by averaging all the daily closing quotations
over a month. One may, therefore, speak of a single average price for
each month.

FIGURE C14-6. A rough test of stationarity for the process of change of cotton
prices between 1816 and 1940. The horizontal axis displays negative changes
between successive monthly averages. (Source: Statistical Bulletin No. 99 of the
Agricultural Economics Bureau, United States Department of Agriculture.) To
avoid interference between the various graphs, the horizontal scale of the kth
graph from the left was multiplied by 2k − 1.) The vertical axis displays relative
frequencies  Fr (U < − u) corresponding respectively to the following periods
(from left to right): 1816-60, 1816-32, 1832-47, 1847-61, 1880-96, 1896-1916,
1916-31, 1880-1940.
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Moving on to Figure 7, we compare the distribution of the averages
with that of actual monthly values. We see that, overall, they only differ
by a horizontal translation to the left, as predicted in Section IIC. Actually,
in order to apply the argument of that section, it would be necessary to
rephrase it by replacing Z(t) by logeZ(t) throughout. However, the
geometric and arithmetic averages of daily Z(t) do not differ much in the
case of medium-sized overall monthly changes of Z(t).

But the largest changes between successive averages are smaller than
predicted. This seems to suggest that the dependence between successive
daily changes has less effect upon actual monthly changes than upon the
regularity with which these changes are performed. {P.S. 1996: see
Appendix I of this chapter.}

III.F. A new presentation of the evidence

I will now show that the evidence concerning daily changes of cotton
price strengthens the evidence concerning monthly changes, and con-
versely.

The basic assumption of my argument is that successive daily changes
of log (price) are independent. (This argument will thus have to be
revised when the assumption is improved upon.) Moreover, the popu-
lation second moment of L(t) seems to be infinite, and the monthly or
yearly price changes are patently nonGaussian. Hence, the problem of
whether any limit theorem whatsoever applies to logeZ(t + T) − logeZ(t) can
also be answered in theory by examining whether the daily changes satisfy
the Pareto-Doeblin-Gnedenko conditions. In practice, however, it is impos-
sible to attain an infinitely large differencing interval T, or to ever verify
any condition relative to an infinitely large value of the random variable u.
Therefore, one must consider that a month or a year is infinitely long, and
that the largest observed daily changes of logeZ(t) are infinitely large.
Under these circumstances, one can make the following inferences.

Inference from aggregation. The cotton price data concerning daily
changes of logeZ(t) appear to follow the weaker asymptotic? condition of
Pareto-Doeblin-Gnedenko. Hence, from the property of L-stability, and
according to Section IID, one should expect to find that, as T increases,

T− 1/α{ logeZ(t + T) − logeZ(t) − T E L(t, 1) }

tends towards a L-stable variable with zero mean.
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Inference from disaggregation. Data seem to indicate that price changes
over weeks and months follow the same law, except for a change of scale.
This law must therefore be one of the possible nonGaussian limits, that is,
it must be L-stable. As a result, the inverse part of the theorem of Section
IID shows that the daily changes of log Z(t) must satisfy the Doeblin-
Gnedenko conditions. (The inverse D-G condition greatly embarrassed me
in my work on the distribution of income. It is pleasant to see that it can
be put to use in the theory of prices.) A few of the difficulties involved
in making the above two inferences will now be discussed.

Disaggregation. The D-G conditions are less demanding than asymptotic
scaling because they require that limits exist for Q′(u)/Q′′(u) and for

 
 
Q′(u) + Q′′(u)  /  

 
Q′(ku) + Q′′(ku)  , but not for Q′(u) and Q′′(u) taken sepa-

rately. Suppose, however, that Q′(u) and Q′′(u) still vary a great deal in
the useful range of large daily variations of prices. In this case,
A(N)∑Un − B(N) will not approach its own limit until extremely large

FIGURE C14-7. These graphs illustrate the effect of averaging. Dots reproduce the
same data as the lines 1c and 2c of Figure 5. The × 's reproduce distribution
of logeZ

0(t + 1) − logeZ
0(t), where Z0(t) is the average spot price of cotton in

New York during the month t, as reported in the Statistical Bulletin No. 99 of
the Agricultural Economics Bureau, United States Department of Agriculture.
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values of N are reached. Therefore, if one believes that the limit is rapidly
attained, the functions Q′(u) and Q′′(u) of daily changes must vary very
little in the tails of the usual samples. In other words, it is necessary, after
all, that daily price changes be asymptotically scaling.

Aggregation. Here, the difficulties are of a different order. From the
mathematical viewpoint, the L-stable law should become increasingly
accurate as T increases. Practically, however, there is no sense in even
considering values of T as long as a century, because one cannot hope to
get samples sufficiently long to have adequately inhabited tails. The year
is an acceptable span for certain grains, but here the data present other
problems. The long available yearly series do not consist of prices actually
quoted on some market on a fixed day of each year, but are averages.
These averages are based on small numbers of quotations, and are
obtained by ill-known methods that are bound to have varied in
time.  From the viewpoint of economics, two much more fundamental
difficulties arise for very large T. First of all, the model of independent
daily L's eliminates from consideration every “trend,” except perhaps the
exponential growth or decay due to a nonvanishing δ. Many trends that
are negligible on the daily basis would, however, be expected to be pre-
dominant on the monthly or yearly basis. For example, the effect of
weather upon yearly changes of agricultural prices might be very different
from the simple addition of speculative daily price movements.

The second difficulty lies in the “linear” character of the aggregation
of successive L's used in my model. Since I use natural logarithms, a
small logeZ(t + T) − logeZ(t) will be indistinguishable from the relative price
change  

 
Z(t + T) − Z(t)  /Z(t). The addition of small L's is therefore related

to the so-called “principle of random proportionate effect.” It also means
that the stochastic mechanism of prices readjusts itself immediately to any
level that Z(t) may have attained. This assumption is quite usual, but very
strong. In particular, I shall show that if one finds that
log Z(t + one week) − log Z(t) is very large, it is very likely that it differs
little from the change relative to the single day of most rapid price vari-
ation (see Section VE); naturally, this conclusion only holds for inde-
pendent L's. As a result, the greatest of N successive daily price changes
will be so large that one may question both the use of logeZ(t) and the
independence of the L's.

There are other reasons (see Section IVB) to expect to find that a
simple addition of speculative daily price changes predicts values too high
for the price changes over periods such as whole months.
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Given all these potential difficulties, I was frankly astonished by the
quality of the prediction of my model concerning the distribution of the
changes of cotton prices between the fifteenth of one month and the fif-
teenth of the next. The negative tail has the expected bulge, and even the
most extreme changes of price can be extrapolated from the rest of the
curve. Even the artificial excision of the Great Depression and similar
periods would not affect the results very greatly.

It was therefore interesting to check whether the ratios between the
scale coefficients, C′(T)/C′(1) and C′′(T)/C′′(1), were both equal to T, as
predicted by my theory whenever the ratios of standard deviations
σ′(T)/σ′(s) and σ′′(T)/σ′′(s) follow the T1/α generalization of the “T1/2

Law,” which was referred to in Section IIB. If the ratios of the C parame-
ters are different from T, their values may serve as a measure of the
degree of dependence between successive L(t, 1).

The above ratios were absurdly large in my original comparison
between the daily changes near 1950 of the cotton prices collected by H.
Houthakker, and the monthly changes between 1880 and 1940 of the
prices given by the USDA. This suggested that the price varied less
around 1950, when it was supported, than it had in earlier periods. There-
fore, I also plotted the daily changes for the period near 1900, which was
chosen haphazardly, but not actually at random. The new values of
C′(T)/C′(1) and C′′(T)/C′′(1) became quite reasonable: they were equal to
each other and to 18. In 1900, there were seven trading days per week,
but they subsequently decreased to five. Besides, one cannot be too dog-
matic about estimating C′(T)/C′(1). Therefore, the behavior of this ratio
indicated that the “apparent” number of trading days per month was
somewhat smaller than the actual number.

{P.S. 1996. Actually, I had badly misread the data: cotton was not
traded on Sundays in 1900, and correcting this error improved the fit of
the M 1963 model; see Appendix IV to this Chapter.}

IV. WHY ONE SHOULD EXPECT TO FIND NONSENSE MOMENTS
AND NONSENSE PERIODICITIES IN ECONOMIC TIME SERIES

IV.A. Behavior of second moments and failure of the least-squares
method of forecasting

It is amusing to note that the first known nonGaussian stable law, namely,
the Cauchy distribution, was introduced in the course of a study of the
method of least squares. A surprisingly lively argument followed the
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reading of Cauchy 1853. In this argument, Bienaymé 1853 stressed that a
method based upon the minimization of the sum of squares of sample
deviations cannot reasonably be used if the expected value of this sum is
known to be infinite. The same argument applies fully to the problem of
least-squares smoothing of economic time series, when the “noise” follows
a L-stable law other than that of Cauchy.

Similarly, consider the problem of least-squares forecasting, that is, of
the minimization of the expected value of the square of the error of
extrapolation. In the L-stable case, this expected value will be infinite for
every forecast, so that the method is, at best, extremely questionable.

One can perhaps apply a method of “least ζ-power” of the forecasting
error, where ζ < α, but such an approach would not have the formal sim-
plicity of least squares manipulations. The most hopeful case is that of
ζ = 1, which corresponds to the minimization of the sum of absolute values
of the errors of forecasting.

IV.B. Behavior of the sample kurtosis and its failure as a measure of the
“peakedness” or “long-tailedness” of a distribution

Pearson proposed to measure the peakedness or long-tailedness of a dis-
tribution by the following quantity, call “kurtosis”

kurtosis = − 3 +
fourth population moment

square of the second population moment
.

In the L-stable case with 0 < α < 2, the numerator and the denominator
both have an infinite expected value. One can, however, show that the
sample kurtosis + 3 behaves proportionately to the following “typical”
value

( 1
N

(the most probable value of �L4)

⎧
⎨
⎩

1
N

(the most probable value of �L2)
⎫
⎬
⎭

2

=
(a constant)N− 1 + 4/α

{(a constant) N− 1 + 2/α}2
= (a constant)N.

It follows that the kurtosis is expected to increase without bound as
N → ∞. For small N, things are less simple, but presumably quite similar.
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In this light, examine Cootner 1962. This paper developed the
tempting hypothesis that prices vary at random as long as they do not
wander outside a “penumbra”, defined as an interval that well-informed
speculators view as reasonable. But random fluctuations triggered by ill-
informed speculators will eventually let the price go too high or too low.
When this happens, the operation of well-informed speculators will induce
this price to come back within the “penumbra.” If this view of the world
were correct, one would conclude that the price changes over periods of,
say, fourteen weeks would be smaller than expected if the contributing
weekly changes were independent.

This theory is very attractive a priori, but could not be generally true
because, in the case of cotton, it is not supported by the facts. As for
Cootner's own justification, it is based upon the observation that the price
changes of certain securities over periods of fourteen weeks have a much
smaller kurtosis than one-week changes. Unfortunately, his sample con-
tains 250-odd weekly changes and only 18 fourteen-week periods. Hence,
on the basis of general evidence concerning speculative prices, I would
have expected, a priori, to find a smaller kurtosis for the longer time incre-
ment. Also, Cootner's evidence is not a proof of his theory; other methods
must be used in order to attack the still very open problem of the possible
dependence between successive price changes.

IV.C. Method of spectral analysis of random time series

These days, applied mathematicians are frequently presented with the task
of describing the stochastic mechanism capable of generating a given time
series u(t), known or presumed to be random. The first response to such a
problem is usually to investigate what is obtained by applying a theory of
the “second-order random process.” That is, assuming that E(U) = 0, one
forms the sample covariance

r(τ) = 1
N − τ �

t = T0 + N − τ

t = T0 + 1

u(t)u(t + τ),

which is used, somewhat indirectly, to evaluate the population covariance

R(τ) = E U(t)U(t + τ) .
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Of course, R(τ) is always assumed to be finite for all τ. The Fourier trans-
form of R(τ) is the “spectral density” of the process U(t), and rules the
“harmonic decomposition” of U(t) into a sum of sine and cosine terms.

Broadly speaking, this method has been very successful, though many
small-sample problems remain unsolved. Its applications to economics
have, however, been questionable even in the large-sample case. Within
the context of my theory, there is, unfortunately, nothing surprising in this
finding. Indeed,

2E  
 
U(t)U(t + τ)  = E  

 
U(t) + U(t + τ)  

2 − E  
 
U(t)  

2 − E  
 
U(t + τ)  

2
.

For time series covered by my model, the three variances on the right
hand side are all infinite, so that spectral analysis loses its theoretical moti-
vation. This is a fascinating problem, but I must postpone a more detailed
examination of it.

V. SAMPLE FUNCTIONS GENERATED BY L-STABLE PROCESSES;
SMALL-SAMPLE ESTIMATION OF THE MEAN “DRIFT”

The curves generated by L-stable processes present an even larger number
of interesting formations than the curves generated by Bachelier's
Brownian motion. If the price increase over a long period of time happens
a posteriori to have been exceptionally large, one should expect, in a
L-stable market, to find that most of this change occurred during only a
few periods of especially high activity. That is, one will find in most cases
that the majority of the contributing daily changes are distributed on a
fairly symmetric curve, while a few especially high values fall way outside
this curve. If the total increase is of the usual size, to the contrary, the
daily changes will show no “outliers.”

In this section these results will be used to solve one small-sample sta-
tistical problem, that of the estimation of the mean drift δ, when the other
parameters are known. We shall see that there is no “sufficient statistic”
for this problem, and that the maximum likelihood equation does not nec-
essarily have a single root. This has severe consequences from the view-
point of the very definition of the concept of “trend.”
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V.A. Some properties of sample paths of Brownian motion

The sample paths of Brownian motion very much “look like” the empirical
curves of time variation of prices or of price indexes. This was noted by
Bachelier and (independently of him and of each other) by several modern
writers (see especially Working 1934, Kendall 1953, Osborne 1959 and
Alexander 1964), At closer inspection, however, one sees very clearly the
effect of the abnormal number of large positive and large negative changes
of logeZ(t). At still closer inspection, one finds that the differences concern
some of the economically most interesting features of the generalized
central-limit theorem of the calculus of probability. It is therefore neces-
sary to discuss this question in detail, beginning with a review of some
classical properties of Gaussian random variables.

Conditional distribution of a Gaussian addend L( + τ, 1), knowing the sum
L(t, T) = L(t, 1) + ... + L(t + T − 1, 1). Let the probability density of L(t, T)
be  

1√
2πσ2T

exp
⎧ 
⎨ 
⎩

− u − δT2

2Tσ2

⎫ 
⎬ 
⎭
.

It is then easy to see that, if one knows the value of u of L(t, T), the
density of any of the quantities L(t + τ, 1) is given by

1
2πσ2(T − 1)/T

exp
⎧
⎨
⎩ 

− (u′ − u/T)2

2σ2(T − 1)/T

⎫
⎬
⎭
.

This means that each of the contributing L(t + τ, 1) equals u/T plus a
Gaussian error term. For large T, that term has the same variance as the
unconditioned L(t, 1) – one can in fact prove that the value of u has little
influence upon the size of the largest of those “noise terms.” One can
therefore say that, whatever its value, u is roughly uniformly distributed
over the T time intervals, each contributing negligibly to the whole.

Sufficiency of u for the estimation of the mean drift δ from the L(t + τ, 1).
In particular, δ has vanished from the distribution of any L(t + τ, 1) condi-
tioned by the value of u. In the vocabulary of mathematical statistics u is a
“sufficient statistic” for the estimation of δ from the values of all the
L(t + τ, 1). That is, whichever method of estimation a statistician may
favor, his estimate of δ must be a function of u alone. The knowledge of
intermediate values of logeZ(t + τ) is of no help. Most methods recom-
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mend estimating δ from u/T and extrapolating the future linearly from
the two known points, logeZ(t) and logeZ(t + T). Since the causes of any
price movement can be traced backwards only if the movement is of suffi-
cient size, all that one can explain in the Gaussian case is the mean drift
interpreted as a trend. Bachelier's model, which assumes a zero mean for
the price changes, can only represent the movement of prices once the
broad causal parts or trends have been removed.

V.B. One value from a process of independent L-stable increments

Returning to the L-stable case, suppose that the values of γ, of β (or of C′
and C′′) and of α are known. The remaining parameter is the mean drift
δ; one must estimate δ starting from the known L(t, T) = loge
Z(t + T) − logeZ(t).

The unbiased estimate of δ is L(t, T)/T, while the estimate matches the
observed L(t, T) to its a priori most probable value. The “bias” of the
maximum likelihood is therefore given by an expression of the form
γ1/αf(β), where the function f(β) must be determined from the numerical
table of the L-stable densities. Since β is mostly manifested in the relative
sizes of the tails, its evaluation requires very large samples, and the
quality of predictions will depend greatly upon the quality of one's know-
ledge of the past.

It is, of course, not at all clear that anybody would wish the extrapo-
lation to be unbiased with respect to the mean of the change of the loga-
rithm of the price. Moreover, the bias of the maximum likelihood estimate
comes principally from an underestimate of the size of changes that are so
large as to be catastrophic. The forecaster may very well wish to treat
such changes separately, and to take into account his private opinions
about many things that are not included in the independent-increment
model.

V.C. Two values from a L-stable process

Suppose now that T is even and that one knows L(t, T/2) and
L(t + T/2, T/2), and thus also their sum L(t, T). Section IIG has shown that
when the value u = L(t, T) is given, the conditional distribution of L(t, T/2)
depends very sharply upon u. This means that the total change u is not a
sufficient statistic for the estimation of δ; in other words, the estimates of
δ will be changed by the knowledge of L(t, T/2) and L(t + T/2, T/2).

Consider, for example, the most likely value δ. If L(t, T/2) and
L(t + T/2, T/2) are of the same order of magnitude, this estimate will
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remain close to L(t, T)/T, as in the Gaussian case. But suppose that the
actually observed values of L(t, T/2) and L(t + T/2, T/2) are very unequal,
thus implying that at least one of these quantities is very different from
their common mean and median. Such an event is most likely to occur
when δ is close to the observed value of either L(t + T/2, T/2)/(T/2) or
L(t, T/2)/(t/2).

As a result, the maximum likelihood equation for δ has two roots, one
near 2L(t, T/2)/T and the other near 2L(t + T/2, T/2)/T. That is, the
maximum-likelihood procedure says that one of the available items of
information should be neglected, since any weighted mean of the two
recommended extrapolations is worse than either. But nothing says which
item should be neglected.

It is clear that few economists will accept such advice. Some will
stress that the most likely value of δ is actually nothing but the most prob-
able value in the case of the uniform distribution of a priori probabilities
of δ. But it seldom happens that a priori probabilities are uniformly dis-
tributed. It is also true, of course, that they are usually very poorly deter-
mined. In the present problem, however, the economist will not need to
determine these a priori probabilities with any precision: it will be suffi-
cient to choose the most likely for him of the two maximum-likelihood esti-
mates.

An alternative approach (to be presented later in this paper) will argue
that successive increments of logeZ(t) are not really independent, so that
the estimation of δ depends upon the order of the values of L(t, T/2) and
L(t + T/2, T/2), as well as upon their sizes. This may help eliminate the
indeterminacy of estimation.

A third alternative consists in abandoning the hypothesis that δ is the
same for both changes L(t, T/2) and L(t + T/2, T/2). For example, if these
changes are very unequal, one can fit the data better by assuming that the
trend δ is not linear but parabolic. In a first approximation, extrapolation
would then consist in choosing among the two maximum-likelihood esti-
mates the one which is chronologically the latest. This is an example of a
variety of configurations which would have been so unlikely in the
Gaussian case that they would have been considered nonrandom, and
would have been of help in extrapolation. In the L-stable case, however,
their probability may be substantial.
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V.D. Three values from the L-stable process

The number of possibilities increases rapidly with the sample size.
Assume now that T is a multiple of 3, and consider L(t, T/3),
L(t + T/3, T/3), and L(t + 2T/3, T/3). If these three quantities are of compa-
rable size, the knowledge of log Z(t + T/3) and log Z(t + 2T/3) will again
bring little change to the estimate based upon L(t, T).

But suppose that one datum is very large and the others are of much
smaller and comparable sizes. Then, the likelihood will have two local
maximums, well separated, but of sufficiently equal sizes as to make it
impossible to dismiss the smaller one. The absolute maximum yields the
estimate δ = (3/2T) (sum of the two small data); the smaller local
maximum yields the estimate δ = (3/T) (the large datum).

Suppose, finally, that the three data are of very unequal sizes. Then
the maximum likelihood equation has three roots.

This indeterminacy of maximum likelihood can again be lifted by one
of the three methods of Section VC. For example, if only the middle
datum is large, the methods of nonlinear extrapolation will suggest a
logistic growth. If the data increase or decrease – when taken
chronologically – a parabolic trend should be tried. Again, the probability
of these configurations arising from chance under my model will be much
greater than in the Gaussian case.

V.E. A large number of values from a L-stable process

Let us now jump to the case of a very large amount of data. In order to
investigate the predictions of my L-stable model, we must first reexamine
the meaning to be attached to the statement that, in order that a sum of
random variables follow a central limit of probability, it is necessary that
each of the addends be negligible relative to the sum.

It is quite true, of course, that one can speak of limit laws only if the
value of the sum is not dominated by any single addend known in advance.
That is, to study the limit of A(N)∑Un − B(N), one must assume that, for
every n, Pr

 
A(N)Un − B(N)/N ≥ ε tends to zero with 1/N.

As each addend decreases with 1/N, their number increases, however,
and the condition of the preceding paragraph does not by itself insure that
the largest of the A(N)Un − B(N)/N  is negligible in comparison with the
sum. As a matter of fact, the last condition is true only if the limit of the
sum is Gaussian. In the scaling case, on the contrary, the ratios
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tend to nonvanishing limits as N increases (Darling 1952 and Arov &
Bobrov 1960). In particular, it can be proven that, when the sum
A(N)∑Un − B(N) happens to be large, the above ratios will be close to one.

Returning to a process with independent L-stable L(t), we may say the
following: If, knowing α, β, γ, and δ, one observes that L(t, T = one
month) is not large, the contribution of the day of largest price change is
likely to be nonnegligible in relative value, but it will remain small in
absolute value. For large but finite N, this will not differ too much from
the Gaussian prediction that even the largest addend is negligible.

Suppose, however, that L(t, T = one month) is very large. The scaling
theory then predicts that the sum of few largest daily changes will be very
close to the total L(t, T). If one plots the frequencies of various values of
L(t, 1), conditioned by a known and very large value for L(t, T), one
should expect to find that the law of L(t + τ, 1) contains a few widely
“outlying” values. However, if the outlying values are taken out, the con-
ditioned distribution of L(t + τ, 1) should depend little upon the value of
the conditioned L(t, T). I believe this last prediction to be well satisfied by
prices.

Implications concerning estimation. Suppose now that δ is unknown and
that one has a large sample of L(t + τ, 1)'s. The estimation procedure then
consists of plotting the empirical histogram and translating it horizontally
until its fit to the theoretical density curve has been optimized. One
knows in advance that the best value will be very little influenced by the
largest outliers. Hence, “rejection of the outliers” is fully justified in the
present case, at least in its basic idea.

V.F. Conclusions concerning estimation

The observations made in the preceding sections seem to confirm some
economists' feeling that prediction is feasible only if the sample size is
both very large and stationary, or if the sample size is small but the
sample values are of comparable sizes. One can also make predictions
from a sample size of one, but here the availability of a unique estimator
is due only to ignorance.
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V.G. Causality and randomness in L-stable processes

We mentioned in Section VA that, in order to be “causally explainable,”
an economic change must be large enough to allow the economist to trace
back the sequence of its causes. As a result, the only causal part of a
Gaussian random function is the mean drift δ. The same is true of
L-stable random functions when their changes happen to be roughly uni-
formly distributed.

But it is not true in the cases where logeZ(t) varies greatly between the
times t and t + T, changing mostly during a few of the contributing days.
Then, the largest changes are sufficiently clear-cut, and are sufficiently sep-
arated from “noise,” to be explained causally, just as well as the mean
drift.

In other words, a careful observer of a L-stable random function will
be able to extract causal parts from it. But if the total change of logeZ(t) is
neither very large nor very small, there will be a large degree of arbitrar-
iness in this distinction between causal and random. Hence, it would not
be possible to determine whether the predicted proportions of the two
kinds of effects are empirically correct.

In sum, the distinction between the causal and the random areas is
sharp in the Gaussian case and very diffuse in the L-stable case. This
seems to me to be a strong recommendation in favor of the L-stable
process as a model of speculative markets. Of course, I have not the
slightest idea why the large price movements should be representable in
this way by a simple extrapolation of movements of ordinary size. I have
come to believe, however, that it is very desirable that both “trend” and
“noise” be aspects of the same deeper “truth.” At this point, we can ade-
quately describe it but cannot provide an explanation. I am certainly not
antagonistic to the goal of achieving a decomposition of economic “noise”
into parts similar to the trend, and to link various series to each other.
But, until we come close to this goal, we should be pleased to be able to
represent some trends as similar to “noise.”

V.H. Causality and randomness in aggregation “in parallel”

Borrowing a term from elementary electrical circuit theory, the addition of
successive daily changes of a price may be denoted by the term “aggre-
gation in series,” the term “aggregation in parallel” applying to the opera-
tion
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L(t, T) = �
I

i = 1

L(i, t, T), = �
I

i = 1
�
T − 1

τ = 0

L(i, t + τ, 1),

where i refers to “events” that occur simultaneously during a given time
interval such as T or 1.

In the Gaussian case, one should, of course, expect any occurrence of a
large value for L(t, T) to be traceable to a rare conjunction of large changes
in all or most of the L(i, t, T). In the L-stable case, one should, on the con-
trary, expect large changes L(t, T) to be traceable to one or a small number,
of the contributing L(i, t, T). It seems obvious that the L-stable prediction is
closer to the facts.

If we add up the two types of aggregation in a L-stable world, we see
that a large L(t, T) is likely to be traceable to the fact that L(i, t + τ, 1)
happens to be very large for one or a few sets of values of i and of τ.
These contributions would stand out sharply and be causally explainable.
But after a while, they should rejoin the “noise” made up of the other
factors. The next rapid change of logeZ(t) should be due to other “causes.”
If a contribution is “trend-making,” in the above sense, during a large
number of time-increments, one will naturally doubt that it falls under the
same theory as the fluctuations.

VI. PRICE VARIATIONS IN CONTINUOUS TIME AND THE THEORY
OF SPECULATION

The main point of this section is to examine certain systems of speculation,
which appear advantageous, and to show that, in fact, they cannot be fol-
lowed in the case of price series generated by a L-stable process.

VI.A. Infinite divisibility of L-stable variables

In theory, it is possible to interpolate L(t, 1) indefinitely. That is, for every
N, one can consider that a L-stable increment

L(t, 1) = logeZ(t + 1) − logeZ(t)

is the sum of N independent, identically distributed random variables.
The only difference between those variables and L(t, 1) is that the con-
stants γ, C′ and C′′ are N times smaller in the parts than in the whole.
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In fact, it is possible to interpolate the process of independent L-stable
increments to continuous time, assuming that L(t, dt) is a L-stable variable
with a scale coefficient γ(dt) = dt γ(1). This interpolated process is a very
important “zeroth” order approximation to the actual price changes. That
is, its predictions are without doubt modified by the mechanisms of the
market, but they are very illuminating nonetheless.

VI.B. Path functions of a L-stable process in continuous time

Mathematical models of physical or of social sciences almost universally
assume that all functions can safely be considered to be continuous and to
have as many derivatives as one may wish. Contrary to this expectation,
the functions generated by Bachelier have no derivatives, even though
they are indeed continuous. In full mathematical rigor, “there is a proba-
bility equal to 1 that they are continuous but nondifferentiable almost
everywhere, but price quotations are always rounded to simple fractions
of the unit of currency. If only for this reason, we need not worry about
mathematical rigor here.

In the scaling case things are quite different. If my process is interpo-
lated to continuous t, the paths which it generates become discontinuous
in every interval of time, however small (in full rigor, they become
“almost surely almost everywhere discontinuous”). That is, most of their
variation occurs through noninfinitesimal “jumps.” Moreover, the number
of jumps larger than u and located within a time increment T is given by
the law C′T d(u− α) .

Let us examine a few aspects of this discontinuity. Again, very small
jumps of logeZ(t) could not be perceived, since price quotations are always
expressed in simple fractions. More interesting is the fact that there is a
nonnegligible probability of witnessing a price jump so large that supply
and demand cease to be matched. In other words, the L-stable model can
be considered as predicting the occurrence of phenomena likely to force
the market to close. In a Gaussian model, such large changes are so
extremely unlikely that the occasional closure of the markets must be
explained by nonstochastic considerations.

The most interesting fact is, however, the large probability predicted
for medium-sized jumps by the L-stable model. Clearly, if those medium-
sized movements were oscillatory, they could be eliminated by market
mechanisms such as the activities of the specialists. But if the movement
is all in one direction, market specialists could at best transform a disconti-
nuity into a change that is rapid but progressive. On the other hand, very
few transactions would then be expected at the intermediate smoothing
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prices. As a result, even if the price Z0 is quoted transiently, it may be
impossible to act rapidly enough to satisfy more than a minute fraction of
orders to “sell at Z0.” In other words, a large number of intermediate
prices are quoted even if Z(t) performs a large jump in a short time; but
they are likely to be so fleeting, and to apply to so few transactions, that
they are irrelevant from the viewpoint of actually enforcing a “stop loss
order” of any kind. In less extreme cases – as, for example, when bor-
rowings are over-subscribed – the market may have to resort to special
rules of allocation.

These remarks are the crux of my criticism of certain systematic
trading methods: they would perhaps be very advantageous if only they
could be followed systematically; but, in fact, they cannot be followed. I
shall be content here with a discussion of one example of this kind of rea-
soning.

VI.C. The fairness of Alexander's “filter” game

Alexander 1964 has suggested the following rule of speculation: “If the
market goes up 5%, go long and stay long until it moves down 5%, at
which time sell and go short until it again goes up 5%.”

This procedure is motivated by the fact that, according to Alexander's
interpretation, data would suggest that “in speculative markets, price
changes appear to follow a random walk over time; but ... if the market
has moved up x%, it is likely to move up more than x% further before it
moves down x%.” He calls this phenomenon the “persistence of moves.”
Since there is no possible persistence of moves in any “random walk” with
zero mean, we see that if Alexander's interpretation of facts were con-
firmed, it would force us to seek immediately a model better than the
random walk.

In order to follow this rule, one must, of course, watch a price series
continuously in time and buy and sell whenever its variation attains the
prescribed value. In other words, this rule can be strictly followed if and
only if the process Z(t) generates continuous path functions, as for
example in the original Gaussian process of Bachelier.

Alexander's procedure cannot be followed, however, in the case of my
own first-approximation model of price change in which there is a proba-
bility equal to one that the first move not smaller than 5% is greater than
5% and not equal to 5%. It is therefore mandatory to modify the filter
method: one can at best recommend buying or selling when moves of 5%
are first exceeded. One can prove that the L-stable theory predicts that this
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is game also fair. Therefore, evidence – as interpreted by Alexander –
would again suggest that one must go beyond the simple model of inde-
pendent increments of price.

But Alexander's inference was actually based upon the discontinuous
series constituted by the closing prices on successive days. He assumed
that the intermediate prices could be interpolated by some continuous
function of continuous time – the actual form of which need not be speci-
fied. That is, whenever there was a difference of over 5% between the
closing price on day F′ and day F′′, Alexander implicitly assumed that
there was at least one instance between these moments when the price had
gone up exactly 5 per cent. He recommends buying at this instant, and he
computes the empirical returns to the speculator as if he were able to
follow this procedure.

For price series generated by my process, however, the price actually
paid for a stock will almost always be greater than that corresponding to a
5% rise; hence the speculator will almost always have paid more than
assumed in Alexander's evaluation of the returns. Similarly, the price
received will almost always be less than suggested by Alexander. Hence,
at best, Alexander overestimates the yield corresponding to his method of
speculation and, at worst, the very impression that the yield is positive
may be a delusion due to overoptimistic evaluation of what happens
during the few most rapid price changes.

One can, of course, imagine contracts guaranteeing that the broker will
charge (or credit) his client the actual price quotation nearest by excess (or
default) to a price agreed upon, irrespective of whether the broker was
able to perform the transaction at the price agreed upon. Such a system
would make Alexander's procedure advantageous to the speculator, but
the money he would be making, on the average, would come from his
broker and not from the market, and brokerage fees would have to be
such as to make the game at best fair in the long run.

VII. A MORE REFINED MODEL OF PRICE VARIATION,
TAKING ACCOUNT OF SERIAL DEPENDENCE

Broadly speaking, the predictions of my main model seem to me to be rea-
sonable. At closer inspection, however, one notes that large price changes
are not isolated between periods of slow change; they rather tend to be the
result of several fluctuations, some of which “overshoot” the final changes.
Similarly, the movements of prices in periods of tranquility seem to be
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smoother than predicted by my process. In other words, large changes
tend to be followed by large changes – of either sign – and small changes
tend to be followed by small changes, so that the isolines of low proba-
bility of L(t, 1), L(t − 1, 1)  are X-shaped. In the case of daily cotton
prices, Hendrik S. Houthakker stressed this fact in several conferences and
in private conversation.

Such an X-shape is easily obtained by a 90° rotation from the “+
shape” which was observed when L(t, 1) and L(t − 1, 1) are statistically
independent and symmetric (Figure 4). This rotation introduces the two
expressions:

S(t) = (1/2) L(t, 1) + L(t − 1, 1) = (1/2) logeZ(t + 1) − logeZ(t − 1)

and

D(t) = (1/2) L(t, 1) − L(t − 1, 1)
= (1/2) logeZ(t + 1) − 2 logeZ(t) + logeZ(t − 1) .

It follows that in order to obtain X-shaped empirical isolines, it would
be sufficient to assume that the first and second finite differences of
logeZ(t) are two L-stable random variables, independent of each other, and
naturally of logeZ(t) (Figure 4). Such a process is invariant by time inver-
sion.

It is interesting to note that the distribution of L(t, 1), conditioned by
the known L(t − 1, 1), is asymptotically scaling with an exponent equal to
2α + 1. A derivation is given at the end of this section. For the cases, we
are interested in, α > 1.5, hence 2α + 1 > 4. It follows that the conditioned
L(t, 1) has a finite kurtosis; no L-stable law can be associated with it.

Let us then consider a Markovian process with the transition proba-
bility I have just introduced. If the initial L(T0, 1) is small, the first values
of L(t, 1) will be weakly asymptotic scaling with a high exponent 2α + 1, so
that logeZ(t) will begin by fluctuating much less rapidly than in the case of
independent L(t, 1). Eventually, however, a large L(t0, 1) will appear.
Thereafter, L(t, 1) will fluctuate for some time between values of the orders
of magnitude of L(t0, 1) and − L(t0, 1). This will last long enough to com-
pensate fully for the deficiency of large values during the period of slow
variation. In other words, the occasional sharp changes of L(t, 1) predicted
by the model of independent L(t, 1) are replaced by oscillatory periods,
and the periods without sharp change are shown less fluctuating then
when the L(t, 1) are independent.
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We see that, if α is to estimated correctly, periods of rapid changes of
prices must be considered with the other periods. One cannot argue that
they are “causally” explainable and ought to be eliminated before the
“noise” is examined more closely. If one succeeded in eliminating all
large changes in this way, one would indeed have a Gaussian-like
remainder. But this remainder would be devoid of any significance.

Derivation of the value 2α + 1 for the exponent. Consider

Pr{L(t, 1) > u, when w < L(t − 1, 1) < w + dw}.

This is the product by (1/dw) of the integral of the probability density
of  

 
L(t − 1, 1)L(t, 1)  , over a strip that differs infinitesimally from the zone

defined by

S(t) > (u + w)/2; w + S(t) < D(t) < w + S(t) + dw.

Hence, if u is large as compared to w, the conditional probability in ques-
tion is equal to the integral

⌠
⌡

∞

(u + w)/2
C′αs− (α + 1)C′α(s + w)− (α + 1)ds ∼ (2α + 1)− 1(C′)2α22− (2α + 1)u− (2α + 1).

&&&& POST-PUBLICATION APPENDICES  &&&&

These four appendices from different sources serve different purposes.

APPENDIX I (1996): THE EFFECTS OF AVERAGING

The M 1963 model of price variation asserts that price changes between
equally spaced closing times are L-stable random variables. As shown
momentarily, the model also predicts that changes between monthly
average prices are L-stable.

To the contrary, Figure 7 suggests that the tails are shorter than pre-
dicted and the text notes that this is a token of interdependence between
successive price changes.
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The incorrect prediction. If L(0) = 0 and L(t) has independent L-stable
increments, consider the increment between the “future” average from 0 to
t and the value at t. Integration by parts yields

 
1
t

⌠
⌡

t

0
L(s)ds − L(t) = − 1

t
⌠
⌡

t

0
sdL(s).

The r.h.s. is a L-stable random variable for which (scale)α equals

t− α⌠
⌡

t

0
sαds = (α + 1)− 1t.

The “past increment” is independent of the “future increment,” and
follows the same distribution. So does the difference between the two

APPENDIX II (MOSTLY A QUOTE FROM FAMA & BLUME 1966):
THE EXEMPLARY FALL OF ALEXANDER'S FILTER METHOD

Section VI C of M 1963b criticizes a rule of speculation suggested in
Alexander 1961, but does not provide a revised analysis of Alexander's
data. However, Alexander's filters did not survive this blow. The story
was told by Fama and Blume 1966 in the following terms:

“Alexander's filter technique is a mechanical trading rule which
attempts to apply more sophisticated criteria to identify movements in
stock prices. An x% filter is defined as follows: If the daily closing price
of a particular security moves up at least x per cent, buy and hold the
security until its price moves down at least x% from a subsequent high, at
which time simultaneously sell and go short. The short position is main-
tained until daily closing prices rises at least x% above a subsequent low
at which time one covers and buys. Moves less than x% in either direc-
tion are ignored.

“Alexander formulated the filter technique to test the belief, widely
held among market professionals, that prices adjust gradually to new
information.

“The professional analysts operate in the belief that there exist certain
trend generating facts, knowable today, that will guide a speculator to
profit if only he can read them correctly. These facts are assumed to gen-
erate trends rather than instantaneous jumps because most of those
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trading in speculative markets have imperfect knowledge of these facts,
and the future trend of price will result from a gradual spread of aware-
ness of these facts throughout the market [Alexander 1961, p.7].

“For the filter technique, this means that for some values of x we
would find that ‘if the stock market has moved up x% it is likely to move
up more than x per cent further before it moves down by x% ’ [Alexander
1961, p.26].

“In his Table 7, Alexander 1961 reported tests of the filter technique
for filters ranging in size from 5 to 50 per cent. The tests covered different
time periods from 1897 to 1959 and involved closing “prices” for two
indexes, the Dow-Jones Industrials from 1897 to 1929 and Standard and
Poor's Industrials from 1929 to 1959. In general, filters of all different
sizes and for all the different time periods yielded substantial profits –
indeed profits significantly greater than those of the simple buy-and-hold
policy. This led Alexander to conclude that the independence assumption
of the random-walk model was not upheld by his data.

“M 1963b [Section VI.C] pointed out, however, that Alexander's com-
putations incorporated biases which led to serious overstatement of the
profitability of the filters. In each transaction Alexander assumed that this
hypothetical trader could always buy at a prices exactly equal to the low
plus x per cent and sell at the high minus x per cent. In fact, because of
the frequency of large price jumps, the purchase price will often be some-
what higher than the low plus x per cent, while the sale price will often be
below the high minus x per cent. The point is of central theoretical impor-
tance for the L-stable hypothesis.

“In his later paper [Alexander 1964, Table 1] Alexander reworked his
earlier results to take account of this source of bias. In the corrected tests
the profitability of the filter technique was drastically reduced.

“However, though his later work takes account of discontinuities in
the price series, Alexander's results are still very difficult to interpret. The
difficulties arise because it is impossible to adjust the commonly used
price indexes for the effects of dividends. This will later be shown to
introduce serious biases into filter results.”

Fama & Blume 1966 applied Alexander's technique to series of daily
closing prices for each individual security of the Dow-Jones Industrial
Average. They concluded that the filter method does not work.

Thus, the filters are buried for good, but many “believers” never
received this message.
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APPENDIX III (1996): ESTIMATION BIAS AND OTHER REASONS
FOR α > 2

Chapter E10, reproducing M 1960i{E10}, is followed by Post-Publication
Appendix IV, adapted from M 1963i{E10}. The body of the present
chapter, M 1963b, was written near-simultaneously with that appendix,
and very similar comments can be made here. That is, for α close to 2, the
diagrams in Figure 3 are inverse S-shaped, therefore, easily mistaken for
straight lines with a slope that is > α, and even > 2.

A broader structure is presented in Chapters E1 and E6, within which
α has no upper bound. Therefore, the remark in the preceding paragraph
must not be misconstrued. Estimation bias is only one of several reasons
why an empirical log log plot of price changes may have a slope that con-
tradicts the restriction [1, 2] that is characteristic of L-stability with
EU < ∞.

APPENDIX IV (M 1972b): CORRECTION OF AN ERROR IN VCSP

• Section foreward. The correction of an error in VCSP = M 1963b
improved in the fit between the data and the M 1963 model, eliminating
some pesky descrepancies that VCSP had pointed out as deserving a fresh
look. •
Infinite variance and of non-Gaussian L-stable distribution of price differ-
entials were introduced for the first time in M 1963b. The prime material
on which both hypotheses were based came in part from H.S. Houthakker
and in part from the United States Department of Agriculture; it con-
cerned daily spot prices of cotton.

Since then, the usefulness of those hypotheses was confirmed by the
study of many other records, both in my work and in that of others. But
it has now come to my attention that part of my early evidence suffered
from a serious error. In the data sheets received from the USDA, an
important footnote had been trimmed off, and as a result they were
misread. Numbers which I had interpreted as Sunday closing prices were
actually weekly price averages. They were inserted in the blanks conven-
iently present in the data sheets. My admiring joke about hard-working
American cotton dealers of 1900-1905 was backfiring; no one corrected me
in public, but I shudder at some comments that must have been made in
private about my credibility. The error affected part of Figure 5 of M
1963b: the curves 1a and 2a relative to that period were incorrect.
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After several sleepless nights, this error was corrected, and the anal-
ysis was revised. I am happy to report that my conclusion was upheld, in
fact, much simplified, and the fit between the theory and the data
improved considerably. M 1963b{E14} noted numerous peculiarities that
had led me to consider my hypotheses as no more than rough first
approximations. For example, the simplest random-walk model implied
that a monthly price change is the sum of independent daily price
changes. In fact, as I was careful to note, such was the case only if one
assumed that a month included an “apparent number of trading days ...
smaller than the actual number.” The theory also implied that, whenever a
monthly price change is large, it is usually about equal to the largest con-
tributing daily price change. In fact, instances when large monthly
changes resulted from, say, three large daily changes (one up and two
down, or conversely) were more numerous in the data than predicted.
Both findings suggested that a strong negative dependence exists between
successive price changes. Also, prices seemed to have been more volatile
around 1900 than around 1950. After the data have been corrected, these
peculiarities have disappeared. In particular, the corrected curves 1a and
2a are nearly indistinguishable from the corresponding curves 1b and 2b
relative to the Houthhakker data concerning the period 1950-58.

APPENDIX V (M 1982c): A “CITATION CLASSIC”

• Section foreward. In 1982, the Citation Index of the Institute of Scientific
Information determined that M 1963b had become a Citation Classic.
Current Contents/Social and Behavioral Sciences invited me to comment,
“emphasizing the human side of the research – how the project was initi-
ated, any obstacles encountered, and why the work was highly cited.” •
 ✦ Abstract.  Changes of commodity and security prices are fitted
excellently by the L-stable probability distributions. Their parameter α is
the intrinsic measure of price volatility. The model also accounts for the
amplitudes of major events in economic history. An unprecedented
feature is that price changes have an infinite population variance. ✦

Early in 1961, coming to Harvard to give a seminar on my work on
personal income distributions, I stepped into the office of my host, H. S.
Houthakker. On his blackboard, I noticed a diagram that was nearly iden-
tical to one I was about to draw, but concerned a topic of which I knew
nothing: the variability of the price of cotton. My host had given up his
attempt to model this phenomenon and challenged me to take over.
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In a few weeks, I had introduced a radically new approach. It pre-
served the random walk hypothesis that the market is like a lottery or a
casino, with prices going up or down as if determined by the throw of
dice. It also preserved the efficient marked hypothesis that the market's
collective wisdom take account of all available information, hence, the
price tomorrow and on any day thereafter will on the average equal today's
price. The third basis of the usual model is that price changes follow the
Gaussian distribution. All these hypotheses, due to Louis Bachelier 1900,
were first taken seriously in 1960. The resulting theory, claiming that
price (or its logarithm) follows a Brownian motion, would be mathemat-
ically convenient, but it fits the data badly.

Most importantly, the records of throws of a die appear unchanged
statistically. In comparison, the records of competitive price changes “look
nonstationary”; they involve countless configurations that seem too striking
to be attributable to mere chance. A related observation: the histograms of
price changes are very far from the Galton ogive; they are long-tailed to
an astonishing degree, due to large excursions whose size is obviously of
the highest interest.

My model replaces the customary Gaussian hypothesis with a more
general one, while allowing the population variance of the price changes
to be infinite. The model is time invariant, but it creates endless config-
urations, and accounts for all the data, including both the seemingly non-
stationary features, and the seemingly nonrandom large excursions.

A visiting professorship of economics at Harvard, 1962-1963, was trig-
gered by IBM Research Note NC-87 (M 1962i), which tackled the prices of
cotton and diverse commodities and securities. Also, M 1963b was imme-
diately reprinted in Cootner 1964, along with discussions by E. F. Fama,
who was my student at the time, and by the editor. This publication must
have affected my election to Fellowship in the Econometric Society.
However, after a few further forays in economics, my interest was drawn
irresistibly toward the very different task of creating a new fractal geom-
etry of nature. Having learned to live with the unprecedented infinite var-
iance syndrome had trained me to identify telltale signs of divergence in
the most diverse contexts, and to account for them suitably.

By its style, my work on prices remains unique in economics; while all
the other models borrow from the final formulas of physics, I lean on its
basic mental tool (invariance principles) and deduce totally new formulas
appropriate to the fact that prices are not subjected to inertia, hence need
not be continuous. My work is also unique in its power: the huge bodies
of data that it fits involve constant jumps and swings, but I manage to fit
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everything without postulating that the rules themselves shift and change.
Thus, my models are acknowledged as having opened a path toward a
new and more realistic economics. Nevertheless, the progress of this new
economics is slow, due to inherent mathematical difficulties and to my
failure to push its development. All too often (though with notable
exceptions, e.g. in Samuelson 1967), a publication devoted to the totally
discredited Gaussian model quotes my work largely to show the author's
awareness of his own work's limitations, and possibly to assuage his con-
science.

&&&&&&&&&&&& ANNOTATIONS  &&&&&&&&&&&&

Comment on a generalized L-stability. To avoid unnecessary compli-
cation, this chapter does not write down the general definition of
L-stability, which adds a constant to the right-hand side of (S). The effect
is to introduce additional L-stable laws with α = 1; they are of possible rel-
evance in the study of business concentration (Chapter E13).

How this paper came to be written. This paper's publication story is
unique in my record, since it led a serious economics journal to follow a
practice that is reputed to characterize The Reader's Digest. The story
begins with M 1962i, IBM Research Note NC-87, dated March 26, 1962. I
followed that text when teaching in the Harvard Department of Economics
in 1962-63 and it was discussed at the 1962 Annual Meeting of the
Econometric Society (see Chapter E17).

Later in 1963, after I had moved from the Harvard Economics Depart-
ment to the Harvard Applied Physics program, Paul Cootner called from
MIT. His book of reprints on The Random Character of Stock Market Prices
was nearing completion, and he was sorry I was not a contributor. He
was very familiar with my Report NC-87 and also knew that I was plan-
ning to expand this report into a short book. He wanted me to contribute
to his book a short text based on NC-87, but did not want to include
unpublished pieces, only actual reprints. Could my work be rushed into
print somewhere, anywhere, so he could then reprint it? His publisher
would accept page proofs.

I called every economics journal editor in turn. Some asked me to
spell my name, others inquired about my field of work, a few knew me,
but bemoaned the length of their backlog and the slowness of their ref-
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erees. Finally, I struck gold with Merton Miller, an editor of the Journal of
Business of the University of Chicago. He asked for a few hours to check a
few things, then called back with a deal: NC87 was already well-known
in Chicago, therefore no refereeing was needed; if I could manage to mail
a rough version of the paper within a week, he would stop an issue about
to go to press, and add my paper to it. The journal would even provide
editorial assistance, and there would be no bill for “excess” corrections in
proof. This deal could not be turned down, and the paper and its reprint
became widely known on the research side of the financial community.
At one time, a reprint combining M 1963b and Fama 1963 was given as
premium to new subscribers of the Journal of Business.

Belated acknowledgement. Only after the paper had appeared did Merton
Miller tell me that the editor Miller selected was E. F. Fama, who was no
longer my student but on the University of Chicago faculty. Had this
information been available in advance, I would have acknowledged
Fama's help in my paper. I thanked him verbally, but this was not
enough. To thank him in writing, late is better than never.


